首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用负载型Rh/MgO/γ-Al2O3催化剂研究了毫秒级甲烷蒸汽重整过程,在水碳比为1和3的条件下,详细考察了反应温度、空速和催化剂Rh含量对反应转化率和选择性的影响。研究结果表明,Rh/MgO/γ-Al2O3催化剂在毫秒级操作条件下具有良好的催化性能,使用5%(质量分数)Rh催化剂,在水碳比3、反应温度1150 K、空速641.11 L•(g cat)-1•h-1时,CH4转化率约90%,CO2选择性约20%,毫秒级接触时间反应行为即可接近热力学平衡。高温有利于毫秒级甲烷蒸汽重整过程。  相似文献   

2.
《Catalysis communications》2003,4(11):585-590
The effect of steam on the acid strength of H3PW12O40 (HPW)/SiO2 · nH2O was determined by the Hammett indicators. When the steam content in N2 was 1.6%, the acidity (H0 > −13.7) of HPW/SiO2 · nH2O could be kept for over 10 h at 300 °C, but for only 2 h when steam was lacking. When it was used as a catalyst for skeletal isomerization of n-butane to isobutane at 300 °C, the HPW/SiO2 · nH2O showed stability in the presence of steam (1.6% in feed) better than that without steam, due to a suppression of the loss of crystalline water.  相似文献   

3.
《Catalysis communications》2004,5(11):671-675
Steam reforming of methanol (SRM) was investigated over Cu/CeO2/γ-Al2O3 catalysts with different compositions in a parallelized 10-channel micro-structured reactor. The catalytic activity was found to be strongly dependent on the copper loading. The parallel screening result was tentatively discussed with surface analysis characterization results and previous proposals. A reaction mechanism is proposed to rationalize the catalytic activity data and characteristics of the catalysts, which supposes that the copper/ceria interfacial area (partially oxidized copper nanoparticle and defective ceria) is the active site for SRM. The oxygen reverse spillover from ceria to copper is suggested to be involved in the catalysis cycle.  相似文献   

4.
The novel bi-layer environmental barrier coatings (EBCs) with HfO2-SiO2/Yb2Si2O7 structure (70HfO2-30SiO2/Yb2Si2O7: 70HS/YbDS, 50HfO2-50SiO2/Yb2Si2O7: 50HS/YbDS, molar ratios) was tested in 90%H2O–10%O2 conditions between room temperature and 1475 °C in an Al2O3 tube furnace, then its performance was evaluated. The YbDS layer was contaminated by alumina impurities under steam conditions. After 22 cycles, the 70HS/YbDS completely separated from the SiC substrate, while the 50HS/YbDS and SiC did not separate, even though cracks formed at the 50HS/SiC interface and the TGO layer. Furthermore, the thermally grown oxide (TGO) layer formed at the HfO2-SiO2/SiC interface. Formation and growth of the TGO led to the formation and propagation of cracks at the HfO2-SiO2/TGO interface and TGO interior, which was the culprit leading to the failure of EBCs. These results demonstrated that the 50HS/YbDS EBCs have the potential to protect SiC in steam conditions at 1475 °C.  相似文献   

5.
Hydrogen production by (combined) steam reforming of methanol (CSRM) was investigated over CuO–CeO2 catalysts prepared via the urea-combustion method. The characteristics of the resulting oxides were strongly influenced by the autoignition time during synthesis and the sample prepared with near stoichiometric quantity of urea had less favorable catalytic properties. Catalysts prepared from urea-rich or lean mixtures were more active and selective and an optimum behavior was obtained with 75% excess of urea and Cu/(Cu + Ce) ratio equal to 0.15. The higher methanol conversion in the CSRM process may be attributed to more efficient heat transfer in the bed due to combustion of part of methanol.  相似文献   

6.
A major problem of using Ni-based catalysts is deactivation during catalytic cracking and reforming, lowering catalytic performance of the catalysts. Modification of catalyst with alkali-loading was expected to help reduce coke formation, which is a cause of the deactivation. This paper investigated the effects of alkali-loading to aluminasupported Ni catalyst on catalytic performance in steam reforming of biomass-derived tar. Rice husk and K2CO3 were employed as the biomass feedstock and the alkali, respectively. The catalysts were prepared by a wet impregnation method with γ-Al2O3 as a support. A drop-tube fixed bed reactor was used to produce tar from biomass in a pyrolysis zone incorporated with a steam reforming zone. The result indicated that K2CO3/NiO/γ-Al2O3 is more efficient for steam reforming of tar released from rice husk than NiO/γ-Al2O3 in terms of carbon conversion and particularly hydrogen production. Effects of reaction temperature and steam concentration were examined. The optimum temperature was found to be approximately 1,073 K. An increase in steam concentration contributed to more tar reduction. In addition, the K2CO3-promoted NiO/γ-Al2O3 was found to have superior stability due to lower catalyst deactivation.  相似文献   

7.
Effect of metal oxide additives on the catalytic performance of Ga2O3–Al2O3 prepared by the sol–gel method for the selective reduction of NO with propene in the presence of oxygen was studied. Of several metal oxide additives, the addition of In2O3 enhanced drastically the activity of Ga2O3–Al2O3 for NO reduction by propene in the presence of H2O. In addition, the activity of In2O3‐doped Ga2O3–Al2O3 catalyst was extremely intensified by the presence of H2O below 350°C. The promotional effect of H2O was interpreted by the suppression of undesirable propene oxidation and the removal of carbonaceous materials deposited on the catalyst surface. We also found that close interaction of In2O3 and Ga2O3 is necessary for the enhancement of activity by H2O. A lot of hydrocarbons except methane and oxygenated compounds served as good reducing agents, among which propene and 2‐propanol were the most efficient ones. In2O3‐doped Ga2O3–Al2O3 catalyst was capable of reducing NO into N2 quite efficiently in the presence of H2O at a very high space velocity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The metal oxides modified Ni/γ-Al2O3 catalysts for glycerol steam reforming were prepared by impregnation. Characterization results of fresh catalysts indicated that the molybdates modification abated the acidity and the stronger metal-support interaction of Ni/γ-Al2O3 catalysts, leading to a stable catalytic activity. Especially, NiMoLa-CaMg/γ-Al2O3 (NiMoLa/CMA) catalyst exhibited no deactivation along with glycerol complete conversion to stable gaseous products containing 69% H2, 20% CO and 10% CO2 during time-on-stream of 42 h. TPO of spent Ni/γ-Al2O3 catalysts modified by different components showed that the carbon deposit on acidic sites and NiAl2O4 species led to catalysts deactivation. A lower reforming temperature and a higher LHSV and glycerol content were helpful to the production of syngas from GSR over NiMoLa/CMA; the reverse conditions would improve the formation of H2.  相似文献   

9.
10.
We investigated the sintering behavior of Cr2O3–Al2O3 ceramic materials. In our observation of the isothermal shrinkage behavior of Cr2O3–Al2O3 ceramic, the activation energy of sintering reaction was measured to be 102 kJ/mol, that is, the near value of the activation energy of diffusion of Al ions in Al2O3 single crystal. Therefore the diffusion of cations is believed to control the sintering behavior of this material. With the addition of TiO2, (the compound chosen to accelerate the diffusion of cations) to Cr2O3–Al2O3, the sintering behavior was accelerated.  相似文献   

11.
《应用陶瓷进展》2013,112(6):352-357
Abstract

MgO–Al2O3–SiO2 (MAS) cordierite based glass ceramics were prepared by volume crystallisation. X-ray diffraction, Scanning electron microscopy and Energy diffraction scanning were used to investigate crystallisation behaviour and the influence of P2O5 on microstructure MAS based glass ceramics. The results showed that P5+ could promote the phase separation of MAS glass and that the glass was divided into two areas, such as Mg4Al2Ti9O25 and the containing P5+ area at <900°C. Mg4Al2Ti9O25 and Mg3(PO4)2 in the area were both advantageous to the precipitation of μ cordierite, which further transformed to α cordierite due to P5+ in the residual glassy phase. However, P5+ inhibited the presence of cordierite when the heat treatment temperature was >900°C.  相似文献   

12.
Glass Physics and Chemistry - The effect of tungsten oxide on the crystallization properties of glasses of the 37.5B2O3 22.5La2O3 (40 – x)Nb2O5 xWO3 (where x = 10, 15, 20, 30, 40 mol %)...  相似文献   

13.
以偶氮染料橙黄G(OG)为目标污染物,研究Fe2+分别催化H2O2、S2O82-、H2O2-S2O82-降解0.1 mmol/L OG Fe2+/H2O2体系,[Fe2+]=1 mmol/L, pH=3, [H2O2]0=10 mmol/L,降解30 min OG脱色率为96%,随着pH值增大和[H2O2]0>10 mmol/L,OG脱色率减小,呈线性变化。Fe2+/S2O82-体系,随着S2O82-初始浓度增加OG脱色率增大,随着pH值增大OG脱色率减小,呈非线性变化。Fe2+/H2O2-S2O82-体系,pH=3, [H2O2]0=2 mmol/L, [S2O82-]0>10 mmol/L时OG脱色率持续增大。Fe2+/H2O2-S2O82-体系矿化率最高。利用乙醇和硝基苯作为分子探针,采用分子探针竞争实验鉴定该体系中产生的SO4?和OH?。  相似文献   

14.
The effect of the addition of CeO2 or La2O3 on the surface properties and catalytic behaviors of Al2O3-supported Pd catalysts was studied in the steam reforming of methane. The FTIR spectroscopy of adsorbed CO and the Pd dispersion suggest the partial coverage of Pd0 by ceria or lanthana species. This could lead to the formation of an adduct MPd x O (M = Ce or La) at the surface of the metal crystallites. The addition of ceria or lanthana resulted in an increase of the turnover rate and specific rate for steam reforming of methane. One possible explanation if that the Pd0*Pdδ+O–M interfacial species (M = Ce or La) are oxidized by H2O or CO2, promoting the O* transfer to the metal surface. This could facilitate the removal of C* species from the metal surface, resulting in the increase of specific reaction rate and increase of the accessibility of CH4 to metal active sites.  相似文献   

15.
The possibility of using vanadium pentoxide (V2O5) as a catalyst in rechargeable lithium–oxygen (Li–O2) batteries was studied. A V2O5-carbon composite was cast onto Ni foam to form a cathode. Electrochemical cells designed based on the flat cell manufactured by Hohsen Corporation were fabricated. The initial discharge capacity was 715 mA?h?g?1, and the maximum discharge capacity reached 2,260 mA?h?g?1 during the twelfth cycle. The cell had high capacity retention during cycling (1.24?% during cycles 2–8). V2O5 acted as a catalyst as well as an active material, improving the specific capacity and capacity retention of the non-aqueous Li–O2 cell more effectively than do other materials.  相似文献   

16.
The structural role of copper ions in melts (glasses) of the Na2O–SiO2–Cu2O–CuO system is analyzed in the framework of the acid–base concept with due regard for the geometric (the radius ratio for Cu2(1)+ and O2– ions) and energy (the mean enthalpies of the Cu2(1)+–O bonds) factors. It is demonstrated that copper ions in the structure fulfill the function of modifier cations. In these melts, the Cu1+–Cu2+ redox equilibrium can be described without regard for the formation of [Cu2(1)+O4/2]2(3)– ionic complexes (which could be incorporated into the structure of silicon–oxygen anions) and [Cu2+O b/k ]2 – b/k polyhedra providing the interaction between Cu2+ ions and anions. The influence of the formation of these polyhedra on the redox equilibrium is considered within the formalism of chemical thermodynamics. The composition dependence of the oxygen ion exponent pO is measured by an electromotive force (emf) technique. The ratio between the numbers of copper atoms with different valences is determined by chemical analysis. The experimental data obtained are in agreement with the theoretical inferences.  相似文献   

17.
The improving effect of Sr in the catalytic activity of Rh for N2O decomposition has been studied under 1,000 ppm N2O/He and 1,000 ppm N2O/5% O2/He (GHSV = 10,000 h?1). Different techniques have been used for catalysts characterization: TEM, SEM-EDX, XRD, N2 adsorption at ?196 °C and in situ XPS. Sr favours the Rh dispersion and reduction under reaction conditions, and allows the low temperature removal of N2O in the presence of O2 (100% decomposition at 350 °C).  相似文献   

18.
19.
The effects of adding 1–8 wt% Y2O3 on phase formation and fracture toughness of Al2O3xZrO2–Y2O3(AZY) ceramics were studied. Phase formations of the samples were characterized by the X-ray diffraction (XRD) technique. It was found that the major phase was rhombohedral-Al2O3, while the minor phase consisted of the monoclinic-ZrO2, tetragonal-ZrO2 and monoclinic-Y2O3. It was found that Y2O3 contents did not clearly influence grain shape of AZY ceramics. The results obtained from the microhardness test could be used to evaluate the fracture toughness. It was found that the smaller grains had high fracture toughness. The maximum fracture toughness of 4.827 MPa m1/2 was obtained from 4 wt% Y2O3. Refinement of lattice parameters using Rietveld analysis revealed the quantitative phases of AZY ceramics. This shows that under adding Y2O3 conditions the proportion of tetragonal-ZrO2 phase plays an important role for the mechanical properties of AZY ceramics.  相似文献   

20.
《Ceramics International》2017,43(3):3147-3155
Magnetic properties of Fe2O3/SiO2 samples were studied after being produced by sol-gel synthesis and formation of ε-Fe2O3 polymorph. Samples were thermally treated, using different annealing temperatures and annealing times. The size and morphological characteristics of the iron oxide nanoparticles were examined using a TEM microscope. We used the “ellipticity of shapes”, which is a measure of how much the shape of a nanoparticle differs from a perfect ellipse, in order to quantitatively describe morphological properties of nanoparticles. Coercivity measurements were used to identify and monitor the formation of the epsilon-iron oxide phase during the thermal treatments (annealing). Coercivity values were in the range from 1.2 to 15.4 kOe, which is in accordance with previous experience regarding the existence of ε-Fe2O3. We have determined the optimal formation conditions for the ε-Fe2O3 polymorph (t=1050 °C for 7 h, HC=15.4 kOe), as well as the narrow temperature interval (1050–1060 °C) in which the polymorph abruptly vanished (HC=2300 Oe), on the basis of results of the magnetic properties. The threshold temperature for the ε-Fe2O3 phase transformation was measured as 1060 °C. We found that different annealing temperatures and annealing times significantly affected magnetic properties of the examined samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号