首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New lead‐free perovskite solid solution ceramics of (1 ? x)(Bi1/2Na1/2)TiO3xBa(Ni1/2Nb1/2)O3[(1?x)BNT–xBNN,= 0.02–0.06) were prepared and their dielectric, ferroelectric, piezoelectric, and electromechanical properties were investigated as a function of the BNN content. The X‐ray diffraction results indicated that the addition of BNN has induced a morphotropic phase transformation from rhombohedral to pseudocubic symmetry approximately at = 0.045, accompanying an evolution of dielectric relaxor behavior as characterized by enhanced dielectric diffuseness and frequency dispersion. In the proximity of the ferroelectric rhombohedral and pseudocubic phase coexistence zone, the = 0.045 ceramics exhibited optimal piezoelectric and electromechanical coupling properties of d33~121 pC/N and kp~0.27 owing to decreased energy barriers for polarization switching. However, further addition of BNN could cause a decrease in freezing temperatures of polar nanoregions till the coexistence of nonergodic and ergodic relaxor phases occurred near room temperature, especially for the = 0.05 sample which has negligible negative strains and thus show the maximum electrostrain of 0.3% under an external electric field of 7 kV/mm, but almost vanished piezoelectric properties. This was attributed to the fact that the induced long‐range ferroelectric order could reversibly switch back to its original ergodic state upon removal of external electric fields.  相似文献   

2.
《Ceramics International》2022,48(10):14329-14337
Although the nonstoichiometric influence on the small-signal dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3 (BNT)-based ferroelectrics has been studied extensively over the past decade, the features of large-signal electric field-induced strain (electrostrain), which are of particular importance to actuator devices, have not been thoroughly investigated. In this study, we used the solid-state reaction method to manufacture nonstoichiometric 0.94(Bi0.5+xNa0.5?x)TiO3-0.06BT (BNTx-6BT) ceramics, where x = 0.0–0.05, and investigated the nonstoichiometric effect on the dielectric and large-signal electromechanical properties, with special emphasis on the electrostrain properties. Our results suggest that the room-temperature phase structures of BNTx-6BT ceramics changed from a regular ferroelectric phase to a relaxor ferroelectric phase as the Bi/Na ratio increased from stoichiometric 50/50 to nonstoichiometric 55/45 owing to the nonstoichiometric effect on the long-range ferroelectric order. In the x = 0.02 nonstoichiometric composition, an ultrahigh and electrostrictive-type electrostrain of 0.53% was identified. Compared to their stoichiometric counterparts, nonstoichiometric compositions have stronger temperature stability during polarization, resulting in good temperature stability of the electrostrain. Our findings not only reveal the nonstoichiometric effect on the phase evolution and its impact on the dielectric and large-signal electromechanical properties of BNTx-6BT ceramics but also provide a new method for tailoring the large-signal electrostrain properties of BNT-based ceramics.  相似文献   

3.
SrTiO3-modified lead-free piezoelectric ceramics, (0.93-x)Bi0.5Na0.5TiO3-xSrTiO3-0.06BaTiO3-0.01 K0.5Na0.5NbO3 [(BNT-xST)-BT-KNN, x = 0-0.06], were prepared using a conventional solid-state reaction method. The XRD structure analysis and electric properties characteristics revealed the ST-induced phase transformation from the ferroelectric phase to the relaxor phase and their coexistence state. Benefiting from the ST-destructed ferroelectric long-range orders, the high normalized strain value of 600 pm/V was obtained in the (BNT-0.02ST)-BT-KNN ceramic at 5 kV/mm. The ST-generated relaxor phase was found to have a constructive effect on improving the temperature stability and restraining the hysteresis of the electric-field-induced strain. The normalized strain of (BNT-0.06ST)-BT-KNN ceramics could be kept at a high value ~337 pm/V at elevated temperature up to 120°C.  相似文献   

4.
The 0.45Bi(Mg0.5Ti0.5)O3–(0.55 ? x)PbTiO3x(Bi0.5Na0.5)TiO3 (BMT–PT–xBNT) ternary solid solution ceramics were prepared via a conventional solid‐state reaction method; the evolution of dielectric relaxor behavior and the electrostrain features were investigated. The XRD and dielectric measurements showed that all studied compositions own a single pseudocubic perovskite structure and undergo a diffuse‐to‐relaxor phase transition owing to the evolution of the domain from a frozen state to a dynamic state. The formation of the above dielectric relaxor behavior was further confirmed by a couple of measurements such as polarization loops, polarization current density curves, as well as bipolar strain loops. A large strain value of ~0.41% at a driving field of 7 kV/mm (normalized strain d33* of ~590 pm/V) was obtained at room temperature for the composition with x = 0.32, which is located near the boundary between ergodic and nonergodic relaxor. Moreover, this electric field‐induced large strain was found to own a frequency‐insensitive characteristic.  相似文献   

5.
In this work, the (1-x)(0.8Na0.5Bi0.5TiO3-0.2K0.5Bi0.5TiO3)-xSrTiO3 (NKBT-xST) incipient piezoelectric ceramics with x = 0–0.07 (0ST-7ST) were prepared by the solid-state reaction method and their structural transformation and electromechanical properties were investigated as a function of ST content. As the ST content increases, the long-range ferroelectric order is disrupted, and the ferroelectric-relaxor phase transition temperature (TFR) shifts to around room temperature for NKBT-5ST ceramics, accompanied by a relatively high electrostrain of 0.3% at 6 kV/mm. The large strain response associated with the vanished ferroelectric properties around TFR can be attributed to the reversible relaxor-ferroelectric phase transition. The electric-field-temperature (E-T) phase diagrams were established, and the transition between the two field-induced long-range ferroelectric states were found to take place via a two-step switching process through an intermediate relaxor state. The threshold electric field to trigger the conversion between ferroelectric state and relaxor state depends strongly on the dynamics of polarization relaxation, which is influenced by temperature and composition.  相似文献   

6.
Lead‐free 0.99[(1?x)Bi0.5(Na0.80K0.20)0.5TiO3?xBiFeO3]–0.01Ta (BNKT20–100xBF–1Ta) lead‐free piezoelectric ceramics were fabricated through conventional solid state sintering method. Results showed that change of BF content in the BNKT20–100xBF–1Ta induced a phase transition from ferroelectric to ergodic relaxor phase with a significant disruption of the long‐range ferroelectric order. A large electric‐field‐induced strain of 0.36% (at 80 kV/cm driving field, corresponding to a large signal of ~450 pm/V) which is derived from a reversible field‐induced ergodic relaxor to ferroelectric phase transformation, was obtained in the composition with x=0.01 near the ferroelectric‐ergodic relaxor phase boundary. Moreover, an attractive property for application in nonlinear actuators demanding enhanced thermal stability was obtained in this material, which showed a temperature‐insensitive strain characteristic in the temperature range from room temperature to 100°C.  相似文献   

7.
Ternary solid solutions of (1 ? x)(0.8Bi0.5Na0.5TiO3–0.2Bi0.5K0.5TiO3)– xNaNbO3 (BNKT–xNN) lead‐free piezoceramics were fabricated using a conventional solid‐state reaction method. Pure BNKT composition exhibited an electric‐field‐induced irreversible structural transition from pseudocubic to ferroelectric rhombohedral phase at room temperature. Accompanied with the ferroelectric‐to‐relaxor temperature TF‐R shifted down below room temperature as the substitution of NN, a compositionally induced nonergodic‐to‐ergodic relaxor transition was presented, which featured the pinched‐shape polarization and sprout‐shape strain hysteresis loops. A strain value of ~0.445% (under a driving field of 55 kV/cm) with large normalized strain of ~810 pm/V was obtained for the composition of BNKT–0.04NN, and the large strain was attributed to the reversible electric‐field‐induced transition between ergodic relaxor and ferroelectric phase.  相似文献   

8.
Na1/2Bi1/2TiO3 (NBT)-based materials are promising lead-free alternatives due to their large electrostrain and stable mechanical quality factor. Nonetheless, the relatively low depolarization temperature (Td) impairs its practical application. Recently, quenching from sintering temperature was adopted to increase Td of NBT-based ceramics. However, the origin of the quenching-induced increase in Td is still debated. In this study, quenching effects in (1-x)(0.4Na1/2Bi1/2TiO3-0.6BiFeO3)-xBaTiO3 ceramics are investigated. With increasing BaTiO3 content, this system transforms from ferroelectric to relaxor state at room temperature, with a criticality at x = 0.07, which exhibits R3c and P4bm coexisted phases. Ferroelectric and relaxor compositions exhibit different responses upon quenching. Upon quenching the ferroelectrics, Td increases from 420 to 580 °C for x = 0.04, but d33 is majorly unaltered. However, upon quenching the relaxors, Td increases marginally, while d33 increases from 62 to 97 pC/N. The correlation between the structural evolution and electrical responses upon quenching ferroelectric and relaxor compositions is explored.  相似文献   

9.
Lead-free (Bi0.5Na0.5)TiO3 (BNT)-based piezoelectric materials, have a great potential for high-precision actuators’ applications. In this work, the high-quality (0.94-x%)(Bi0.5Na0.5)TiO3-0.06BaTiO3-x%NaNbO3 (x = 2–10, BNT-6BT-xNN) thin films have been successfully deposited on Pt/TiO2/SiO2/Si substrates by sol-gel method. An ultra-high poling strain Spol value of 1.7% with a unipolar strain Suni value of 1.47% was reported in the BNT-6BT-6NN thin films. The coexistence of the ferroelectric phase and relaxor state was observed in the compositions of x = 2–8. Furthermore, the BNT-6BT-6NN thin films show more active domain switching compared to other compositions. It is demonstrated that the optimized strain responses in the BNT-6BT-6NN are attributed to a synergistic reaction of active domain switching and reversible electric-field-induced phase transition between the ferroelectric phase and relaxor state. Our systematic study demonstrates that the BNT-6BT-xNN thin films with an improved strain response are promising candidates for the applications of miniaturized actuators.  相似文献   

10.
The solid solution (1 − x)[Bi1/2(Na1/2K1/2)1/2TiO3]-xPbZrO3, (0.00 ≤ x ≤ 0.12) was investigated to examine the phase equilibria, dielectric and electromechanical properties. The composition corresponding to x = 0.00 exhibits tetragonal symmetry with the expected classical ferroelectric (FE) behavior. The system exhibited FE to relaxor crossover with the addition of lead zirconate at the composition x = 0.05. This is indicated by typical relaxor characteristics such as a transition to the global pseudocubic phase, a constriction in the FE hysteresis loop, and a sudden decrease in the negative strain accompanied by an increase in maximum strain. Most notably, with a further increase in x (>0.05), there is evidence for a return to a FE phase that exhibits classical FE characteristics. The combined results demonstrate that there exists a narrow FE-relaxor boundary near x = 0.05, where FE and relaxor phases coexist. At the critical composition, enhancement in the piezoelectric properties, including an increase in the effective (350 pm/V) was observed. This transition in the electromechanical properties is consistent with changes observed in the phase equilibria for this solid solution. The crystal structure transitions from tetragonal symmetry for x = 0.00, to pseudocubic symmetry for the relaxor compositions (x = 0.05), and finally to a lower symmetry perovskite phase for the re-entrant FE phase (x> 0.05). This composition-induced transition from FE to relaxor to a re-entrant FE state in the (1 − x)[Bi1/2(Na1/2K1/2)1/2TiO3]-xPbZrO3 system is unusual among relaxor FE systems and thus is of great scientific and technological interest.  相似文献   

11.
Ceramic capacitors with high electrostatic energy storage performances have captured much research interest in latest years. Sodium bismuth titanate (Na0.5Bi0.5TiO3)-based ferroelectric ceramics show great potential due to their environment-friendly composition, high polarization, and excellent relaxor properties. However, the nonergodic relaxor state of Na0.5Bi0.5TiO3-based ceramics hampers the decrement of remanent polarization, leading to poor energy storage performance. Herein, the (1 − x)Na0.5Bi0.5TiO3xLa(Ni2/3Ta1/3)O3 ceramics were designed to generate the transformation between nonergodic and ergodic relaxor state. As a result, the ceramics exhibit improved dielectric relaxation, slim polarization–electric field loops, and flattened current–electric field curves due to highly dynamic polar nanoregions. Particularly, the 0.85Na0.5Bi0.5TiO3–0.15La(Ni2/3Ta1/3)O3 ceramics show large breakdown electric field Eb (345 kV/cm), high recoverable energy density Wrec (3.6 J/cm3), and efficiency η (80.6%), revealing potential applications in electrostatic energy storage.  相似文献   

12.
The (1?x)(0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3)?xBiMg2/3Nb1/3O3 (100xBMN) ternary solid solutions were designed and prepared using a conventional solid‐state reaction. Temperature and compositional dependent ferroelectric, piezoelectric, dielectric features, and structural evolution were systematically studied. At the critical composition of 2BMN, a large bipolar strain of 0.43% was achieved at 55 kV/cm, and the normalized strain reaches to 862 pm/V at a low driving electric field of 40 kV/cm. It was found that the substitution of BiMg2/3Nb1/3O3 induces a transformation from ferroelectric to relaxor phase by disrupting the long range ferroelectric order. Therefore, as the external electric field was applied, a relaxor‐ferroelectric phase transition will be induced. This is contributed to the giant strain. The results above suggest that such a ternary composition is a promising candidate for application to actuator.  相似文献   

13.
《Ceramics International》2022,48(10):14301-14306
Recently, the progress of electronic devices toward miniaturization has strongly promoted development of multifunctional materials possessing multiple desirable properties. In this study, we develop and fabricate 0.93Bi0.5Na0.5TiO3-0.07BaTiO3-xEr multifunctional ceramics which show simultaneously considerable electric-field-induced strain and bright green light emission properties. With the introduction of Er3+, the ceramics gradually transform from non-ergodic relaxor phase to ergodic relaxor phase which could reversibly transform to ferroelectric phase under the electric field. As a result, with improving Er3+ content, the shape of the polarization-electric field loops of the ceramics become pinched, and it is obvious that the negative strain disappears while the positive strain gradually increases and reaches a maximum value 0.46% at x = 1.2 mol%. Besides, After the ceramics are poled, the light emission peak are greatly enhanced attributed to the decreased crystal symmetry and increased domain size, and is the strongest at x = 1.2 mol%. These results indicate that 0.93Bi0.5Na0.5TiO3-0.07BaTiO3-xEr ceramics are good candidates for developing multifunctional optoelectronic devices.  相似文献   

14.
《Ceramics International》2017,43(16):13612-13617
0.8Bi0.5Na0.5Ti(1-x)NbxO3−0.2Sr0.85Bi0.1TiO3 (BNT-SBT-xNb, x = 0.00, 0.01, 0.02, and 0.03) piezoelectric ceramics were prepared by traditional solid state reaction and the influence of Nb substitution on the phase structure, ferroelectric, piezoelectric, and electric-field-induced strain properties in BNT-SBT ceramics were studied. XRD results exhibited that Nb5+ ions could fully diffuse into BNT-SBT structure to form a solid solution when x = 0.01. P-E loops and S-E curves suggested that the ferroelectric phase transformed to ergodic relaxor state (FE-to-ER) with the increasing the amount of Nb additive, indicating the ferroelectric long-ranged order was disturbed by the excess of Nb. With increasing Nb doping, phase transition temperature from normal ferroelectric to ergodic relaxor (short for TF-R) could be reduced from 120 °C to 40 °C. Furthermore, for sample with x = 0.01, the normalized strain d33* got a maximum value ~571 pm/V due to the phase transition from ergodic relaxor to ferroelectric (ER-to-FE) under electric field.  相似文献   

15.
In order to obtain BNT-based ceramic system with excellent electric-field-induced strain performance for actuator applications, a novel solid solution (100-x)Bi1/2(Na0.82K0.12)1/2TiO3-xBi4Ti3O12 ((100-x)BNKT-xBiT, x?=?0–12?wt%) was designed and fabricated by solid state synthesis. The microstructure and related electrical properties of this material were systematically investigated. It was found that BiT is dissolved into the lattice structure of the BNKT, leading to a greater increase in the volatilization of Na and K, thus produce more A-site vacancies compared with the undoped BNKT. The 9?wt%BiT doped sample not only has sufficient A-site vacancies to destroy the long-range ferroelectric order of the base composition but also favors the presence of extremely stable relaxor phase at room temperature. Further, the ferroelectric-to-relaxor phase transition temperature TF-R can be effectively tuned to about 0?°C, giving rise to a large signal piezoelectric coefficient d*33 of 485?pm/V with a small hysteresis η of 23%.  相似文献   

16.
The (0.94–x)Bi0.5Na0.5TiO3–0.06BaTiO3–x(Sr0.7Bi0.20.1)TiO3 (BNT–BT–xSBT, 0  x  0.24) solid solution ceramics were synthesized via a conventional solid–state reaction method and the correlation of phase structure, piezoelectric, ferroelectric properties and electrocaloric effect (ECE) was investigated in detail. The ECE in lead–free BNT–BT–xSBT ceramics was measured directly using a home–made adiabatic calorimeter with maximum adiabatic temperature change ΔT = 0.4 K with x = 0.08 under the electric field E = 6 kV/mm at room temperature. The position of maximum ECE was found in the vicinity of nonergodic and ergodic phase boundary, where the maximum change in entropy occurs as a result of the field–induced phase transformation between the ergodic and long–range ferroelectric phase. Besides, the mechanism for the shift of ECE peak is discussed in detail. Finally, the temperature dependence of ECE for BNT–BT–xSBT (x = 0, 0.04 and 0.08) was also investigated. This work may present a guideline for designing BNT–based ferroelectric relaxor ceramics for EC cooling technologies.  相似文献   

17.
The effects of BiMeO3 (Me = Fe, Sc, Mn, Al) addition on the phase transition and electrical properties of Bi0.5(Na0.80K0.20)0.5TiO3 (BNKT20) lead‐free piezoceramics were systematically investigated. Results showed that addition of BiFeO3 into BNKT20 induces a phase transition from tetragonal–rhombohedral coexisted phases to a tetragonal phase with the observation of enhanced piezoelectric properties (d33 = 150 pC/N for 0.02BiFeO3). BiScO3, BiMnO3, and BiAlO3 substitutions into BNKT20 induce a phase transition from coexistence of ferroelectric tetragonal and rhombohedral to a relaxor pseudocubic with a significant disruption of the long‐range ferroelectric order, and correspondingly adjusts the ferroelectric–relaxor transition point TF–R to room temperature. Accordingly, large accompanying normalized strains of 0.34%–0.36% are obtained near the ferroelectric–relaxor phase boundary, and the mergence of large strain response can be ascribed to a reversible field‐induced ergodic relaxor‐to‐ferroelectric phase transformation. Moreover, our study also revealed that the composition located at the ferroelectric–relaxor phase boundary where the strain response is consistently derivable shifts to a BNKT20‐rich composition as the tolerance factor t of the end‐member BiMeO3 increases, and this relationship is expected to provide a guideline for designing high‐performance (Bi0.5Na0.5)TiO3‐based materials by searching the ferroelectric–relaxor phase boundary.  相似文献   

18.
《Ceramics International》2021,47(21):30399-30405
In this work, (0.64-x)Bi0.5Na0.5TiO3- 0.36Sr0.7Bi0.2TiO3- x(K0.5La0.5)(Ti0.9Zr0.1)O3 lead-free piezoceramics were designed and fabricated by a conventional solid-phase sintering process. It is found that large strains (0.33 %), low hysteresis coefficients (32 %), and large dynamic d33* (367 p.m./V) were obtained at x = 0.01. The large strain originates from the reversible transition of the relaxor to the long-range ferroelectric order in the electric field. When the ferroelectric and relaxor phases coexist in a proper ratio, they can provide a favorable condition for the easier movement of the domains and improve the strain properties. In addition, after 105 cycles, the bipolar strain loop of x = 0.01 content changed slightly, demonstrating excellent fatigue resistance. This work provides a new way to design piezoelectric ceramics with large strain and low hysteresis.  相似文献   

19.
Influence of K/Na ratio in (KxNa1?x)NbO3 on the ferroelectric stability and consequent changes in the electrical properties of 0.99(Bi0.5Na0.4K0.1)TiO3–0.01(KxNa1?x)NbO3 (BNKT–KxNN) ceramics were investigated. Results showed that change of K/Na ratio in KNN induces a phase transition from ferroelectric to ergodic relaxor phase with a significant disruption of the long‐range ferroelectric order, and correspondingly adjusts the ferroelectric–relaxor transition point TF?R to room temperature. Accordingly, giant strain of ~0.46% (corresponding to a large signal d33* of ~575 pm/V) which is comparable to that of Pb‐based antiferroelectrics is obtained at a K/Na ratio of ~1, and the emergence of large strain response induced by the change of K/Na ratio of KNN can be well explained by the correlation between the position of ferroelectric–ergodic relaxor phase boundary in the BNKT–KxNN system and the tolerance factor t of the end number (KxNN). In situ high‐energy X‐ray scattering experiments with external field reveals that the large strain response in the studied system is likely related to the electric field‐induced distortion from the pseudocubic structure.  相似文献   

20.
《Ceramics International》2021,47(23):32747-32755
To investigate the nonstoichiometric effect of (Bi0.5Na0.5)TiO3 (BNT) ceramics on their properties, we propose a novel chemical expression, (Bi0.5+xNa0.5−3x)TiO3. The nonstoichiometric effect of BNT can be explored in compounds with this composition without being hampered by the charge imbalance problem. With x ranging from −0.02 to 0.02, we find that the morphological, dielectric, ferroelectric, and electrostrain properties differ considerably between Na-rich and Bi-rich ceramic samples. The average grain size (AGS) increased significantly in Na-rich samples compared to that in stoichiometric BNT, while it decreased slightly in Bi-rich samples. The dielectric characteristics measured from 30 °C to 500 °C indicate that conductivity is activated in Na-rich nonstoichiometric samples but is effectively suppressed in Bi-rich nonstoichiometric samples. The ferroelectric properties also show the same trend. In Na-rich samples, elliptical polarization against electric field (P-E) hysteresis loops were detected, indicating a conductive character induced by high electric field loading. However, saturated P-E loops are observed in Bi-rich samples with well-inhibited conductivity. Furthermore, compared to stoichiometric BNT and nonstoichiometric x = 0.02 Bi-rich samples, (Bi0.5+xNa0.5−3x)TiO3 samples with x = 0.01 exhibit higher electrostrain from 30 °C to 150 °C. Based on the assumption of charge balance, our findings indicated that the presence of 1 mol% excess Bi would facilitate significant improvement in the dielectric, ferroelectric, and electrostrain properties of BNT and BNT-based systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号