首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influences of different contents ranging 0–15 wt% of high-entropy boride (HEB) (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 on the mechanical properties of SiC-based ceramics using Al2O3-Y2O3 sintering additives sintered by spark plasma sintering process were investigated in this study. The results showed that the introduction of 5 and 10 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 could facilitate the densification and the grain growth of SiC-based ceramics via the mechanism of liquid phase sintering. However, the grain growth of SiC-based ceramics was inhibited by the grain boundary pinning effect with the addition of 15 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2. The SiC-based ceramics with 15 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 showed the enhanced hardness (21.9±0.7 GPa) and high toughness (4.88±0.88 MPa·m1/2) as compared with high-entropy phase-free SiC-based ceramics, which exhibited a hardness of 16.6 GPa and toughness of 3.10 MPa·m1/2. The enhancement in mechanical properties was attributed to the addition of higher hardness of HEB phase, crack deflection toughening mechanism, and presence of residual stress due to the mismatch of coefficient of thermal expansion.  相似文献   

2.
In this study, a novel high-entropy carbide-based ceramic cutting tool was developed. The cutting performance of three kinds of high-entropy carbide-based ceramic tools with different mechanical properties for the ISO C45E4 steel were evaluated. Although the pure (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 ceramic cutting tool exhibited the highest hardness of 25.06 ± 0.32 GPa, the cutting performance was poor due to the chipping and catastrophic failure caused by the low toughness (2.25 ± 0.27 MPa m1/2). The (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8–15 vol% cobalt cutting tool with highest fracture toughness (6.37 ± 0.24 MPa m1/2) and lowest hardness (17.29 ± 0.79 GPa) showed the medium cutting performance due to the low wear resistance caused by the low hardness. The (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8–7.7 vol% cobalt cutting tool showed the longest effective cutting life of ∼67 min due to the high wear resistance and chipping resistance caused by the high hardness (21.05 ± 0.72 GPa), high toughness (5.35 ± 0.51 MPa m1/2), and fine grain size (0.60 ± 0.15 μm). The wear mechanisms of the cobalt-containing (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 ceramic cutting tools included adhesive wear and abrasive wear and oxidative wear. This research indicated that the high-entropy carbide-based ceramics with high hardness and high toughness have potential use in the field of cutting tool application.  相似文献   

3.
《Ceramics International》2022,48(12):17234-17245
The microstructure and mechanical properties of (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 high-entropy boride (HEB) were first predicted by first-principles calculations combined with virtual crystal approximation (VCA). The results verified the suitability of VCA scheme in HEB studying. Besides, single-phase (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 ceramics were successfully fabricated using boro/carbothermal reduction (BCTR) method and subsequent spark plasma sintering (SPS); furthermore, the effects of different amounts of B4C on microstructure and mechanical properties were evaluated. Due to the addition of B4C and C, all samples formed single-phase solid solutions after SPS. When the excess amount of B4C increased to 5 wt%, the sample with fine grains exhibited superior comprehensive properties with the hardness of 18.1 ± 1.0 GPa, flexural strength of 376 ± 25 MPa, and fracture toughness of 4.70 ± 0.27 MPa m1/2. Nonetheless, 10 wt% excess of B4C coarsened the grains and decreased the strength of the ceramic. Moreover, the nanohardness (34.5–36.9 GPa) and Young's modulus (519–571 GPa) values with different B4C contents just showed a slight difference and were within ranges commonly observed in high-entropy diboride ceramics.  相似文献   

4.
In this work, a novel (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)(N0.5C0.5) high-entropy nitride-carbide (HENC-1) with multi-cationic and -anionic sublattice structure was reported and their thermophysical and mechanical properties were studied for the first time. The results of the first-principles calculations showed that HENC-1 had the highest mixing entropy of 1.151R, which resulted in the lowest Gibbs free energy above 600 K among HENC-1, (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)N high-entropy nitrides (HEN-1), and (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy carbides (HEC-1). In this case, HENC-1 samples were successfully fabricated by hot-pressing sintering technique at the lowest temperature (1773 K) among HENC-1, HEN-1 and HEC-1 samples. The as-fabricated HENC-1 samples showed a single rock-salt structure of metal nitride-carbides and high compositional uniformity. Meanwhile, they exhibited high microhardness of 19.5 ± 0.3 GPa at an applied load of 9.8 N and nanohardness of 33.4 ± 0.5 GPa and simultaneously possessed a high bulk modulus of 258 GPa, Young's modulus of 429 GPa, shear modulus of 176 GPa, and elastic modulus of 572 ± 7 GPa. Their hardness and modulus are the highest among HENC-1, HEN-1 and HEC-1 samples, which could be attributed to the presence of mass disorder and lattice distortion from the multi-anionic sublattice structure and small grain in HENC-1 samples. In addition, the thermal conductivity of HENC-1 samples was significantly lower than the average value from the “rule of mixture” between HEC-1 and HEN-1 samples in the range of 300-800 K, which was due to the presence of lattice distortion from the multi-anionic sublattice structure in HENC-1 samples.  相似文献   

5.
High-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics, with different carbon contents (x=0.55?1), were prepared by spark plasma sintering using powders synthesized via a carbothermal reduction approach. Single-phase, high-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics could be obtained when using a carbon content of x=0.70?0.85. Combined ZrO2 and Mo-rich carbide phases, or residual graphite, existed in the ceramics due to either a carbon deficiency or excess at x=0.55 and 1, respectively. With the carbon content increased from x=0.70 to x=0.85, the grain size decreased from 4.36 ± 1.55 μm to 2.00 ± 0.91 μm, while the hardness and toughness increased from 23.72 ± 0.26 GPa and 1.69 ± 0.21 MPa·m1/2 to 25.45 ± 0.59 GPa and 2.37 ± 0.17 MPa·m1/2, respectively. This study showed that the microstructure and mechanical properties of high-entropy carbide ceramics could be adjusted by the carbon content. High carbon content is conducive to improving hardness and toughness, as well as reducing grain size.  相似文献   

6.
Starting from metal oxides, B4C and graphite, a suite of high-entropy boride ceramics, formulated (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2, (Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2 and (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 derived from boro/carbothermal reduction at 1600 °C were fabricated by spark plasma sintering at 2000 °C. It was found that the synthetic high-entropy boride crystalized in hexagonal structure and the yield of the targeting phase was calculated to be over 93.0 wt% in the sintered ceramics. Benefitting from the nearly full densification (96.3% ˜ 98.5% in relative density) and the refined microstructure, the products exhibited the relatively high Vickers hardness. The indentation fracture toughness was determined to be comparable with the single transition metal-diboride ceramics. It should be noted that the formation of high-entropy boride ceramics were featured with the relatively high hardness at no expense of the fracture toughness.  相似文献   

7.
The formation possibility of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic (HHC-1) was first analyzed by the first-principles calculations, and then, it was successfully fabricated by hot-pressing sintering technique at 2073 K under a pressure of 30 MPa. The first-principles calculation results showed that the mixing enthalpy and mixing entropy of HHC-1 were −0.869 ± 0.290 kJ/mol and 0.805R, respectively. The experimental results showed that the as-prepared HHC-1 not only had an interesting single rock-salt crystal structure of metal carbides but also possessed high compositional uniformity from nanoscale to microscale. By taking advantage of these unique features, it exhibited extremely high nanohardness of 40.6 ± 0.6 GPa and elastic modulus in the range from 514 ± 10 to 522 ± 10 GPa and relatively high electrical resistivity of 91 ± 1.3 μΩ·cm, which could be due to the presence of solid solution effects.  相似文献   

8.
In this contribution, the ternary BCN anion systems of high-entropy ceramics (HEC) are consolidated by hot-pressing sintering and the impacts of sintering temperature and the content of amorphous BCN addition on microstructural evolution and mechanical performance were evaluated. Results confirmed that high-entropy, oxide, and BN(C) phases were precipitated for (Ta0.2Nb0.2Zr0.2Hf0.2Ti0.2)(B, C, N) ceramics after sintering at 1900°C. With the decrease of BCN addition, a new phase of MiB2 (Mi representing the metal atoms) occurred. The Vickers hardness, bending strength, elastic modulus, and fracture toughness of the optimized bulk HECs were investigated, obtained at 24.5 ± 2.3 GPa, 522.0 ± 2.6 MPa, 478.9 ± 11.1 GPa, and 5.36 ± 0.56 MPa m1/2, respectively.  相似文献   

9.
《Ceramics International》2023,49(7):10280-10286
Using pre-synthesized high-entropy (Ta0.2W0.2Nb0.2Mo0.2V0.2)C carbide as the reinforcing phase, Ti(C0.7N0.3)-based cermets were prepared by pressureless sintering at 1600 °C. The results revealed that due to the solid solution reaction between the mono-carbide and (Ta0.2W0.2Nb0.2Mo0.2V0.2)C, only one set of face-centered-cubic diffraction peaks in XRD was detected in the as-sintered cermets, alongside the typical core-rim structure. Compared to the Ti(C0.7N0.3)-based cermets without high-entropy reinforcing phase, the Vickers hardness was increased from 17.06 ± 0.09 GPa to 18.42 ± 0.33 GPa and the fracture toughness was increased from 9.21 ± 0.31 MPa m1/2 to 12.56 ± 0.23 MPa m1/2 by adding 10 wt% (Ta0.2W0.2Nb0.2Mo0.2V0.2)C. The wear resistance of the cermet was enhanced significantly with increasing (Ta0.2W0.2Nb0.2Mo0.2V0.2)C content. This work provided a potential that the high-entropy carbide can be applied as an effective reinforcing phase in the preparation of high-performance Ti(C0.7N0.3)-based cermets.  相似文献   

10.
In the current work, fine-grained dual-phase, high-entropy ceramics (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with different phase ratios were prepared from powders synthesized via a boro/carbothermal reduction approach, by adjusting the content of B4C and C in the precursor powders. Phase compositions, densification, microstructure, and mechanical properties were investigated and correlated. Due to the combination of pinning effect and the boro/carbothermal reduction approach, the average grain size (~0.5?1.5 μm) of the dual-phase high-entropy ceramics was roughly one order of magnitude smaller than previously reported literature. The dual-phase high-entropy ceramics had residual porosity ranging from 0.3 to 3.2 % upon sintering by SPS and the material with about 18 vol% boride phase exhibited the highest Vickers hardness (24.2±0.3 GPa) and fracture toughness (3.19±0.24 MPam1/2).  相似文献   

11.
Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C (HTZTNC) was investigated over temperature range of 1400–1600 °C. Results showed improved oxidation resistance of high-entropy carbide compared with individual carbide ceramics. In oxide layer, Ta2O5 and Nb2O5 were found to be dominant phases at 1400 °C, whereas ZrTiO4 and HfTiO4 were main phases obtained at 1500 and 1600 °C. Moreover, these complex dense oxide layer structures on the surface of HTZTNC at high temperature led to excellent oxidation resistance. The observation of Ti-depleted layer at 1500 and 1600 °C after 20 min of oxidation indicated that oxidation mechanism involved outward diffusion of titanium oxide, which was further confirmed by reoxidation experiments. In sum, these findings are promising for future development of high-entropy ultrahigh temperature ceramics with good oxidation resistance.  相似文献   

12.
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics (HEC) with a submicron grain size of 400 to 600 nm were fabricated by spark plasma sintering using a two-step sintering process. Both X-ray and neutron diffractions confirmed the formation of single-phase with rock salt structure in the as-fabricated (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C samples. The effect of submicron grain size on the thermal stability and mechanical properties of HEC was investigated. The grain growth kinetics in the fine-grained HEC was small at 1300 and 1600°C, suggesting high thermal stability that was possibly related to the compositional complexity and sluggish diffusion in HEC. Compared to the coarse-grain HEC with a grain size of 16.5 µm, the bending strength and fracture toughness of fine-grained HEC were 25% and 20% higher respectively. The improvement of mechanical properties in fine-grained HEC may be attributed to micromechanistic mechanisms such as crack deflection.  相似文献   

13.
《Ceramics International》2020,46(17):26626-26631
A new high-entropy monoboride (Mo0.2Ta0.2Ni0.2Cr0.2W0.2)B ceramic with a WB-type orthogonal structure was designed and synthesised by in-situ reactive hot pressing at 2000 °C and 30 MPa for 1.5 h under an argon atmosphere. The microstructure of the sintered samples was comprehensively characterised, and the formation of a high-entropy monoboride (Mo0.2Ta0.2Ni0.2Cr0.2W0.2)B ceramic was confirmed. Owing to the high density of the dislocations and strengthening metal-boron bonds, the high-entropy (Mo0.2Ta0.2Ni0.2Cr0.2W0.2)B ceramic exhibited a hardness of 48.51 ± 4.07 GPa, which enabled it to be classed as a new superhard material. In addition, the thermal conductivity (2.05 ± 0.10 W/(m·K) at 400 °C) and electric conductivity (132.30 S/cm) were determined.  相似文献   

14.
The relationships between microstructures and mechanical properties especially strength and toughness of high-entropy carbide based ceramics are reported in this article. Dense (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C (HEC) and its composite containing 20 vol.% SiC (HEC-20SiC) were prepared by spark plasma sintering. The addition of SiC phase enhanced the densification process, resulting in the promotion of the formation of the single-phase high-entropy carbide during sintering. The high-entropy carbide phase demonstrated a fast grain coarsening but SiC particles remarkably inhibited this phenomena. Dense HEC and HEC-20SiC ceramics sintered at 1900 °C exhibits four-point bending strength of 332 ± 24 MPa and 554 ± 73 MPa, and fracture toughness of 4.51 ± 0.61 MPa·m1/2 and 5.24 ± 0.41 MPa·m1/2, respectively. The main toughening mechanism is considered to be crack deflection by the SiC particles.  相似文献   

15.
Due to the presence of core effects of high-entropy materials, it is believed that the impact of carbon vacancy in high-entropy carbides may differ from that of transition metal monocarbides. In this work, nonstoichiometric high-entropy carbides (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C1−x (HEC1−x) with variable carbon vacancy concentration were fabricated by spark plasma sintering using powder mixtures of high-entropy carbide and metallic powders. Compared with the corresponding monocarbides, the decline rates of lattice constant and elastic modulus were obviously slower as carbon vacancy concentration increased, indicating a more rigid crystalline lattice in the high-entropy carbide. The valence electron number for HEC1−x ceramics with the highest hardness is 7.6, which is inconsistent with the theoretically predicted value of 8.4 for the traditional transition metal carbides. When the carbon vacancy concentration in HEC1−x ceramics is above 20%, the promoting effect of carbon vacancy on grain growth will outweigh the inhibiting effect of sluggish diffusion on grain growth, causing grains to grow quickly.  相似文献   

16.
Five single-phase WB2- and MoB2-containing high-entropy borides (HEBs) have been made via reactive spark plasma sintering of elemental boron and metals. A large reactive driving force enables the full dissolution of 10−20 mol. % WB2 to form dense, single-phase HEBs, including (Ti0.2Zr0.2Hf0.2Mo0.2W0.2)B2, (Ti0.2Ta0.2Cr0.2Mo0.2W0.2)B2, (Zr0.2Hf0.2Nb0.2Ta0.2W0.2)B2, and (Zr0.225Hf0.225Ta0.225Mo0.225W0.1)B2; the successful fabrication of such single-phase WB2-containing HEBs has not been reported before. In the processing science, this result serves perhaps the best example demonstrating that the phase formation in high-entropy ceramics can strongly depend on the kinetic route. A scientifically interesting finding is that HEBs containing softer WB2 and/or MoB2 components are significantly harder than (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 (with harder binary boride components). This exemplifies that high-entropy ceramics can achieve unexpected properties.  相似文献   

17.
《Ceramics International》2020,46(17):26581-26589
High-entropy metal boron carbonitride ceramic powders including (Ta0.2Nb0.2Zr0.2Hf0.2W0.2)BCN, (Ta0.2Nb0.2Zr0.2Hf0.2Ti0.2)BCN, and (Ta0.2Nb0.2Zr0.2Ti0.2W0.2)BCN, were successfully synthesized via mechanical alloying at room temperature. Results show that for the first step of 10 h milling, the amorphous BCN phases are observed. After 24 h of second step milling, the as-synthesized high-entropy ceramics exhibit a single face-centered cubic solid solution structure with high compositional uniformity from nano-scale to micron-scale. When heated to 1500 °C for 30min in flowing Ar, the as-prepared high-entropy ceramic powders still show relatively high thermal stability; however, some metals oxides like HfO2 and ZrO2 are detected due to the pre-existing oxides on sample surfaces. After heat treatment, some amorphous phases are still retained. This work suggests a new processing route on the synthesis of high-entropy metal boron carbonitride ceramics.  相似文献   

18.
A novel (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic was successfully prepared by pressureless sintering at 2200 °C. With increasing content of resin-derived-carbon, the density, and mechanical and thermal properties increased up to a maximum content of 2~4 wt% resin addition, after which further addition was detrimental. All specimens showed high strength (≥347±36 MPa), with the highest value achieving 450±64 MPa, and fracture toughness significantly higher (>20 %) than those of the corresponding monocarbides and Ta0.5Hf0.5C, (Ta1/3Zr1/3Nb1/3)C. The thermal conductivity was approximately equivalent to the lowest value of the corresponding mono-carbides, which was assumed to be due to the lattice distortion effect.  相似文献   

19.
In this study, the low temperature fabrication of a Cf/BNi/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCm high entropy ceramic (HEC) ceramic matrix composite (CMC) was achieved through slurry coating and laminating (SCL) combined with precursor infiltration and pyrolysis (PIP). Firstly, the (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C HEC powder was synthesized by pressureless sintering and ball milling. Then, a Cf/BNi/HECm CMC preform was obtained by the SCL process. At last, the composite was densified by PIP of SiC at 1200 °C and a Cf/BNi/HEC-SiCm CMC was the final result. The density and open porosity of the HEC-CMC were 2.7 g/cm3 and 10%, respectively. The composite had a relatively high flexural strength (269 ± 25 MPa) and flexural modulus (53.3 ± 7.9 GPa). Fiber degradation was scarcely detected and fiber pullout was clearly observed. Most importantly, the fabrication method is simple and the fabrication temperature is rather low. This study opens a new insight for high entropy ceramic matrix composites fabrication.  相似文献   

20.
Herein the ultrafine-grained (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2 high-entropy diboride ceramics were successfully fabricated by high-pressure sintering technology for the first time. The results showed that the grain size, relative density, and Vickers hardness of the as-fabricated samples all increased gradually with increasing sintering temperatures from 1373 K to 1973 K. The relative density and mean grain size of the as-sintered samples at 1973 K were 97.2% and 684 nm, respectively, and simultaneously they exhibited excellent comprehensive mechanical properties, combining a Vickers hardness of 26.2 GPa and a fracture toughness of 5.3 MPa·m1/2, which were primary attributed to the fine grain strengthening mechanism and microcrack deflection toughening mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号