首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S,Fe共掺杂纳米TiO_2的制备及其光催化性能   总被引:2,自引:0,他引:2  
魏凤玉  祝童 《应用化工》2007,36(5):421-424,431
以水热法制得了S,Fe共掺杂的纳米TiO2光催化剂(TiO2-S-Fe),XRD分析表明,其为锐钛矿晶型,S,Fe掺杂能抑制TiO2粒径的生长;UV-vis漫反射表明,TiO2-S-Fe对可见光吸收增强,吸收带边明显红移;XPS显示S,Fe共掺杂,使得TiO2表面羟基氧含量提高,从而提高催化剂活性;可见光降解甲基橙溶液结果表明,共掺杂样品光催化效果优于单掺样品,S和Fe共掺杂对提高TiO2可见光活性具有协同效应。当Fe3+∶S∶Ti(摩尔比)=0.005∶1∶1,180℃下水热反应3 h时,制得的TiO2-S-Fe可见光催化活性比纯TiO2的活性提高了约10倍。  相似文献   

2.
郭忠  张宁  廖禹东 《应用化工》2007,36(8):792-794
采用溶胶-凝胶法,制备了纳米Fe3+/TiO2薄膜,利用XRD、TEM等测试手段进行了样品的表征分析,以降解含阿奇霉素废水为反应模型,研究了纳米Fe3+/TiO2薄膜的紫外光照射催化活性及薄膜的重复使用效果。结果表明,纳米Fe3+/TiO2薄膜不易失活,其催化活性寿命较粉体纳米Fe3+/TiO2的强,且再生性能好,薄膜重复使用4次,仍有明显的降解效果。  相似文献   

3.
蔺波涛  施冬梅 《化工进展》2016,35(2):549-554
以Ti(OC4H9)4为前体,SnCl4为Sn源,采用胶溶-回流法制备了Sn掺杂的TiO2,利用浸渍提拉法将其负载到活性炭纤维(ACF)表面,并运用SEM、XRD、XPS、DRS等手段对TiO2/ACF复合材料进行表征,考察了复合材料光催化降解气相甲醛的性能。研究结果表明,Sn元素掺入TiO2晶格中,有利于抑制TiO2晶粒的生长,促进TiO2由锐钛矿型向金红石型的转化,光吸收范围发生一定程度红移;HNO3的用量为0.015mol、掺锡量为6%、负载两层的TiO2/ACF-50复合材料在紫外光照射下对甲醛的去除率复合材料可达85.2%,而在可见光下仅为65.3%。  相似文献   

4.
《Ceramics International》2016,42(6):7192-7202
In this paper, a series of CdS/TiO2 NTs have been synthesized by SILAR method. The as-prepared CdS/TiO2 NTs have been analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectrometer (EDS), and ultraviolet–visible (UV–vis). And their photocatalytic activities have been investigated on the degradation of methylene blue under simulated solar light irradiation. XRD results indicate that TiO2 NTs were anatase phase, CdS nanoparticles were hexagonal phase. FESEM results indicate that low deposition concentration can keep the nanotubular structures. UV–vis results indicate that CdS can be used to improve the absorbing capability of TiO2 NTs for visible light, and the content of CdS affects the band gap. Photocatalytic results indicate that CdS nanoparticles are conducive to improve the photocatalytic efficiency of TiO2 NTs, and the highest degradation rate can reach 93.8%. And the photocatalytic mechanism of CdS/TiO2 NTs to methylene blue is also described.  相似文献   

5.
《Ceramics International》2016,42(12):13664-13669
RuO2/TiO2 composite nanotube arrays were prepared using an anodic oxidation method combined with dipping. The photocatalytic properties of RuO2/TiO2 nanotube arrays in methylene blue solution were investigated under visible light irradiation. The results showed that Ru existing in the form of RuO2 was dispersed uniformly on the surface of TiO2 nanotubes, and the RuO2 did not change the crystal structure of TiO2 nanotubes. The load of RuO2 on TiO2 had a little influence on the band-gap energy and the absorption band edge, but could increase the amount of Ti-OH functional groups on the surface of TiO2 nanotubes. The RuO2/TiO2 nanotube arrays with the optimal photocatalytic activity were formed in the ruthenium chloride solution with a concentration of 0.0030 mol/L. The 2 h photocatalytic degradation rate of methylene blue increased from 38% for pure TiO2 nanotubes to 69% for RuO2/TiO2 nanotube arrays. This work demonstrated that RuO2/TiO2 nanotube arrays showed an improved photocatalytic property over pure TiO2 nanotubes due to the fact that RuO2 could capture the photo-generated holes, which greatly decreased the recombination of the photo-generated electrons and holes, and hence lengthen the lifetime of photo-induced electrons and increased the amount of hydroxyl groups absorbed on the TiO2 nanotubes surface.  相似文献   

6.
以玉米芯为主要原料,采用热沉积、高温焙烧法,制备N/B/Fe共掺杂生物质炭(N/B/Fe@BC),通过X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)和X射线光电子能谱仪(XPS)等手段对样品的晶格结构、形貌特征和组成等进行表征,并以对硝基酚为对象,探究N/B/Fe@BC电极的电芬顿催化性能。结果表明,N/B/Fe@BC为纳米薄片交错堆积的三维多孔结构,表面缺陷较未掺杂生物质炭显著增加,催化氧还原以两电子产H2O2为主。在电流强度50mA、初始pH为3的电芬顿体系中,120min时对硝基酚的去除率为97.93%±1.62%,60min内反应速率常数k为0.040min-1,是未掺杂生物质炭电极的2.7倍。N/B/Fe@BC电极的pH适用范围较宽,受水质的影响较小,循环使用10次后120min对硝基酚的去除率仍可达到85%以上。  相似文献   

7.
采用溶胶-凝胶-微波法制备Fe3+、Eu3+共掺杂纳米TiO2(Fe/Eu-TiO2),并通过紫外-可见吸收光谱(UV-Vis)、荧光光谱(FS)、X射线衍射(XRD)、扫描电镜(SEM)、比表面积测定(BET)等手段对其进行表征。结果表明:在500℃氮气保护下退火制得的Fe/Eu-TiO2为锐钛矿相纳米颗粒,平均粒径为20—50 nm;对可见光的响应范围为370—770 nm。光催化降解N-(2-苯并咪唑基)-氨基甲酸甲酯(多菌灵)的实验表明,Fe3+、Eu3+共掺杂对TiO2光催化表现出协同增效作用,在可见光下能产生更多的羟基自由基,对多菌灵降解速率常数kapp为0.046 66 min-1,大于分别单掺Fe3+和Eu3+的TiO2纳米粒子。  相似文献   

8.
廖禹东  郭忠  赵风英 《应用化工》2011,40(6):999-1001,1006
用溶胶-凝胶法制备了纳米Fe3+/TiO2,以琼脂糖为载体,采用水热法合成纳米Fe3+/TiO2的琼脂糖凝胶。以降解转移因子制药废水为反应模型,研究了纳米Fe3+/TiO2琼脂糖凝胶薄膜的紫外光照射的催化活性及薄膜的重复使用效果。结果表明,纳米Fe3+/TiO2薄膜光催化活性明显较粉体的强,且不易失活,再生性能好,薄膜重复使用5次以上,仍有明显的降解效果。  相似文献   

9.
以钛酸丁酯、尿素、硝酸镧为原料,采用超声辅助溶胶-凝胶法制备了N、La共掺杂纳米TiO_2光催化材料。用XRD、DSC-TG、UV-Vis DRS、FT-IR、SEM、EDS对材料结构和性能进行了表征。以苯酚为目标污染物,考察材料的光催化性能。结果表明:N、La共掺杂协同作用使晶粒细化,材料的光催化活性显著提高;当N掺杂摩尔分数为5%、La掺杂摩尔分数为1%、催化剂用量为1.5 g/L、焙烧温度为500℃时,光催化降解5 mg/L苯酚的效果最佳。  相似文献   

10.
《Ceramics International》2020,46(13):21431-21438
The solar light sensitive g-C3N4/TiO2 heterojunction photocatalysts containing 20, 50, 80, and 90 wt% graphitic carbon nitride (g-C3N4) were prepared by growing Titania (TiO2) nanoparticles on the surfaces of g-C3N4 particles via one step hydrothermal process. The hydrothermal reactions were allowed to take place at 110 °C at autogenous pressure for 1 h. Raman spectroscopy analyses confirmed that an interface developed between the surfaces of TiO2 and g-C3N4 nanoparticles. The photocatalyst containing 80 wt% g-C3N4 was subsequently heat treated 1 h at temperatures between 350 and 500 °C to improve the photocatalytic efficiency. Structural and optical properties of the prepared g-C3N4/TiO2 heterojunction nanocomposites were compared with those of the pristine TiO2 and pristine g-C3N4 powders. Photocatalytic activity of all the nanocomposites and the pristine TiO2 and g-C3N4 powders were assessed by the Methylene Blue (MB) degradation test under solar light illumination. g-C3N4/TiO2 heterojunction photocatalysts exhibited better photocatalytic activity for the degradation of MB than both pristine TiO2 and g-C3N4. The photocatalytic efficiency of the g-C3N4/TiO2 heterojunction photocatalyst heat treated at 400 °C for 1 h is 1.45 times better than that of the pristine TiO2 powder, 2.20 times better than that of the pristine g-C3N4 powder, and 1.24 times better than that of the commercially available TiO2 powder (Degussa P25). The improvement in photocatalytic efficiency was related to i) the generation of reactive oxidation species induced by photogenerated electrons, ii) the reduced recombination rate for electron-hole pairs, and iii) large specific surface area.  相似文献   

11.
A series of assembled porous TiO2/g-C3N4 (TC) powders composed of spherical nanoparticles were synthesized by controlling the molar ratio of urea to tetrabutyl titanate (TBOT) in a facile hydrothermal process. A nanosheets-constructed hierarchical structure was obtained at the molar ratio of urea to TBOT of 10:1, which possessed uniform mesopores with bimodal distribution (0.5–1.5 nm and 2–20 nm) and interconnected macropores between TC nanosheets. The specific surface area achieved 98.4 m2 g?1. X-ray diffraction (XRD) patterns and high resolution transmission electron microscope (HRTEM) analysis proved that the nanosheets are made of overlapping TC nanocomposite. Photoluminescence (PL) spectra results illustrated that a well-defined hierarchical porous structure is particularly desired for the low recombination rate of carriers. Further, the TC-decorated carbon fiber (CF) cloth was obtained based on the nanosheets assembled hierarchical structure, which showed more outstanding photocatalytic behavior with high degradation capability for Rhodamine B (RhB) (99.9%) and tetracycline hydrochloride (89.8%) at 60 min by 500 W Xe lamp irradiation. After five consecutive cycles, the degradation efficiencies of TC/CF cloth for both RhB and tetracycline hydrochloride all remained above 90% of the initial value.  相似文献   

12.
One of the main challenges of the current photovoltaic systems is improving the performance of the dye-sensitized solar cells (DSSCs). The deliberate insertion of impurity ions into the TiO2 crystal lattice as an electron transporting material in DSSCs might be an effective method for improving the electronic properties of TiO2, which leads to enhancing the photovoltaic efficiency. Recently, co-doping has become a promising strategy that can be used for effective tuning of the electronic properties. In the present study, this method was applied as a novel approach to synthesize Lanthanum-Niobium(La,Nb)-codoped TiO2 nanocrystals via the Pechini sol-gel technique. According to the results, the x-ray diffraction investigation approved the anatase phase formation of (Nb-La)-codoped TiO2 nanoparticles. In addition, the field-emission scanning electron microscopy (FESEM) showed the nanoparticles were semi-spherical and approximately 30?nm in size. The photovoltaic parameters of the assembled dye-sensitized solar cells were tested via current density-voltage measurement, exhibiting an enhancement through introducing 2% mol Nb-La ions into the TiO2 crystal lattice. The electrochemical impedance spectroscopy showed that the charge transfer process occurred faster at the FTO/TiO2 interface, which was attributed to the reduction of charge recombination and enhanced electron conductivity.  相似文献   

13.
《Ceramics International》2016,42(13):15012-15022
Recently, carbon nanofibers@TiO2 (CNFs@TiO2) composites as photocatalysts for dye degradation have attracted intense attention. However, only few contributions had been made to investigate systematically the differences between the various preparation approaches and the influence of thermal treatment on the photocatalytic activity. In this work, the electrospun CNFs@TiO2 composites which were prepared by hydrothermal reaction and blended spinning, respectively, have been fabricated via stabilization in air at 280 °C and then carbonization in N2 at heat treatment temperature between 500 and 1100 °C. The composites which were prepared by hydrothermal reaction and blended spinning showed the outstanding photocatalytic activity at 900 °C and 1100 °C, respectively. And the photocatalytic activity of composites prepared by hydrothermal reaction was higher than that prepared by blended spinning, but reversibility of the composites showed a reverse trend. These results indicated that the effect of heat treatment temperature on the photocatalytic activity depended on the synergistic effect among the adsorptive property of CNFs, TiO2 loading amount and anatase phase content in composites. Hence, combining the merits of hydrothermal reaction and blended spinning, a novel method for preparing CNFs@TiO2 composites with high TiO2 loading amount and strong interfacial interaction could be envisioned.  相似文献   

14.
Crystalline Bi12TiO20 and Bi4Ti3O12 particles were selectively synthesized by rapid microwave-assisted sol-gel method. During the thermal decomposition process of the dried gel, microwave calcination played a key role in producing single phase Bi12TiO20. Our Bi12TiO20 demonstrated one of the highest visible-light photocatalytic activities for MO degradation among the reported bismuth titanate particles with various compositions. Single phase Bi4Ti3O12 can also be prepared by either a conventional calcination at high temperature or a combined heat treatment of a conventional heating followed by microwave calcination. The photocatalytic reaction rate constant of the Bi4Ti3O12 prepared by microwave calcination was three times higher than that of conventionally calcined Bi4Ti3O12, further confirming the advantage of microwave calcination in preparation of highly photocatalytically active bismuth titanate.  相似文献   

15.
贾庆  彭洋  郑彦清  崔月华 《工业催化》2015,23(10):752-757
以钛酸丁酯为钛源,采用微波辅助溶胶-凝胶法制备Ti O2微粒,用于亚甲基蓝染料紫外光照降解实验。对比研究了未掺杂、B掺杂、N掺杂和B-N共掺杂Ti O2的光催化活性,采用扫描电子显微镜表征催化剂微观结构,用Langmuir-Hinshelwood模型进行动力学拟合,并从电化学角度分析。结果表明,采用微波辅助溶胶-凝胶法制备的B-N共掺杂Ti O2具有最佳催化活性,其表面形貌比未掺杂Ti O2更均匀,具有更高的比表面积,同时B-N共掺杂使Ti O2催化剂产生了微观的p-n结效应,表现出很好的催化活性。在B-N共掺杂Ti O2催化剂用量为2 g·L-1和亚甲基蓝初始浓度为10 mg·L-1条件下,室温紫外光照4 h,亚甲基蓝降解率达91.6%。  相似文献   

16.
Photocatalytic activities of TiO2 films were experimentally studied. TiO2 films with different crystal structures (amorphous, anatase, rutile) were prepared by a Low Pressure Metal Organic Chemical Vapor Deposition (LPMOCVD) at different reaction temperatures and also by a Sol-Gel method using TTIP (Titanium Tetra Iso-Pro-poxyde). The Effect of CVD preparation method, CVD reaction conditions, crystal structure and wave-length of UV light on the photocatalytic decomposition rate of methylene blue in aqueous solution were studied. First, the characteristics of CVD preparation of TiO2 films, such as the CVD film growth rate, crystal structure and morphology of the grown TiO2 films, were experimentally studied as a function of CVD reaction temperature. Secondly, photocatalytic activities of TiO2 films were evaluated by using two types of photo-reactors. The results indicated that TiO2 films prepared by CVD exhibit higher photocatalytic activity than a catalyst prepared by the Sol-Gel method. Among the CVD grown TiO2 films, anatase and rutile showed high photocatalytic activities. However, amorphous TiO2 films showed lower activities. The activity of the photocatalysts of anatase films was excellent under all types of UV-lamps. The activity of CVD-prepared anatase films was four to seven times higher than that of photocatalyst films prepared by the Sol-Gel method.  相似文献   

17.
《Ceramics International》2022,48(1):604-614
Boron-doped titanium dioxide nanoparticles (B–TiO2 NPs) were prepared by a sol-gel method. The physicochemical properties of B–TiO2 NPs were characterized by X-ray diffraction, transmission electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy and photoluminescence spectroscopy. The band structure and electrical properties of B–TiO2 NPs were investigated using the first-principle. The effects of the concentration gradient of doping B ions on the photocatalytic antibacterial activity of B–TiO2 NPs under visible-light irradiation were investigated by the inhibition zone method and the shaking flask method. The experimental results show that B–TiO2 NPs are mainly composed of the anatase phase, but no B-related phase was observed. With the increase of the doping amount of boron ions, the particle size decreases and the specific surface area increases. B atoms mainly exist in the form of substitutional dopant and interstitial dopant. Theoretical calculations reveal that B atoms in the TiO2 matrix exist much more easily as interstitial dopant, but B–TiO2 NPs composed of B substituted dopant have better photocatalytic performance. The results of the antibacterial assays show that B–TiO2 NPs have strong antibacterial activities and some bactericidal activities. Finally, the mechanism of the antibacterial activity of B–TiO2 NPs are examined.  相似文献   

18.
Titanium dioxide nanoparticles were modified by polyaniline (PANI) using ‘in situ’ chemical oxidative polymerization method in hydrochloric acid solutions. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy spectrum (XPS) and UV–vis spectra were carried out to characterize the composites with different PANI contents. The photocatalytic degradation of phenol was chosen as a model reaction to evaluate the photocatalytic activities of the modified catalysts. Results show that TiO2 nanoparticles are deposited by PANI to mitigate TiO2 particles agglomeration. The modification does not alter the crystalline structure of the TiO2 nanoparticles according to the X-ray diffraction patterns. UV–vis spectra reveal that PANI-modified TiO2 composites show stronger absorption than neat TiO2 under the whole range of visible light. The resulting PANI-modified TiO2 composites exhibit significantly higher photocatalytic activity than that of neat TiO2 on degradation of phenol aqueous solution under visible light irradiation (λ ≥ 400 nm). An optimum of the synergetic effect is found for an initial molar ratio of aniline to TiO2 equal to 1/100.  相似文献   

19.
以Sol-Gel法及水热合成方法制备了纳米TiO2,利用XRD进行了表征,以太阳光为光源,通过对亚甲基蓝溶液的降解反应,考察了两种方法所得样品的光催化活性。结果表明,利用水热合成法制备的锐钛矿型TiO2具有更小的粒径,而通过溶胶-凝胶制得的样品为混晶型TiO2,对亚甲基蓝降解具有较高的光催化活性。  相似文献   

20.
郭忠  廖禹东  赵风英 《应用化工》2011,40(11):1938-1941
用溶胶-凝胶法制得的纳米Fe3+/TiO2分别以玻璃和琼脂糖为负载体,采用浸渍-提拉法制备Fe3+/TiO2玻璃负载膜,水热合成法制得Fe3+/TiO2琼脂糖凝胶负载膜,通过降解某制药厂的制药废水,探讨两种负载膜对纳米Fe3+/TiO2光催化活性的影响及用琼脂糖为载体的可行性。结果表明,两种负载膜中纳米Fe3+/TiO2的晶相不变,但琼脂糖凝胶负载膜中纳米Fe3+/TiO2粒子的团聚较少,且不易脱落,重复使用性能高,光催化活性明显较Fe3+/TiO2玻璃负载膜强,从而显示了琼脂糖为载体的可行性、优越性和实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号