首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, two new 312 MAX phases of Zr3PbC2 and Hf3PbC2 were successfully synthesized by spark plasma sintering. It is the first discovery of lead-containing 312 MAX phases, which together with M2PbC (M = Ti, Zr, Hf) form the lead-containing MAX phase family. Considering the extremely low electrical conductivity of Hf2PbC, these two new compounds are of great research value. Based on the Rietveld refinement results, their lattice parameters and atomic positions were well determined, as a = 3.3771(5) Å, c = 20.0070(9) Å for Zr3PbC2 and a = 3.3357(1) Å, c = 19.7659(8) Å for Hf3PbC2, where M atoms are located at (0, 0, 0) and (1/3, 2/3, 0.1258(6)[Zr]; 0.1255(2)[Hf]), Pb atoms are located at (0, 0, 1/4), and C atoms are located at (1/3, 2/3, 0.0663(2)[Zr]; 0.0641(3)[Hf]), respectively. Additionally, the typical laminar microstructure of Zr3PbC2 and Hf3PbC2 grains was observed.  相似文献   

2.
《Ceramics International》2022,48(5):6707-6715
The current study aimed to generate Hf/Zr substituted In2O3 with the ultimate aim of realizing a potential transparent conducting oxide. We applied a co-complexation method to bring the reactively dissimilar In and Hf/Zr together in one oxide network. We prepared an EDTA complex containing an equimolar concentration of In and Hf/Zr and examined their characteristics with FTIR and TG-DSC traces. Rietveld refinement results of calcined complexes and their Raman spectra confirmed the formation of anion excess bixbyite structure for (In1-xMx)2O3+δ (M = Hf, Zr, and x = 0.50). The lattice expanded after substituting with Hf/Zr, and the optical bandgap increased from 2.87 eV (In2O3) to 3.20–3.60 eV. The high percentage reflectance in the visible region and absorbance in the UV region fulfilled some of the prerequisites of transparent conducting oxide. Electrical resistivity reduced up to two orders in magnitude with increasing temperature for Hf and Zr incorporated In2O3.  相似文献   

3.

Abstract  

Nanosized CexM1−xO2−δ (M = Zr, Hf, Tb and Pr) solid solutions were prepared by a modified coprecipitation method and thermally treated at different temperatures from 773 to 1073 K in order to ascertain the thermal behavior. The structural and textural properties of the synthesized samples were investigated by means of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), BET surface area, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy (RS) techniques. The catalytic efficiency has been performed towards oxygen storage/release capacity (OSC) and CO oxidation activity. The characterization results indicated that the obtained solid solutions exhibit defective cubic fluorite structure. The solid solutions of ceria–hafnia, ceria–terbia and ceria–praseodymium exhibited good thermal stability up to 1073 K. A new Ce0.6Zr0.4O2 phase along with Ce0.75Zr0.25O2 was observed in the case of ceria–zirconia solid solution due to more Zr4+ incorporation in the ceria lattice at higher calcination temperatures. The reducibility of ceria has been increased upon doping with Zr4+, Hf4+, Tb3+/4+ and Pr3+/4+ cations. This enhancement is more in case of Hf4+ doped ceria. Among various solid solutions investigated, the ceria–hafnia combination exhibited better OSC and CO oxidation activity. The high efficiency of Ce–Hf solid solution was correlated with its superior bulk oxygen mobility and other physicochemical characteristics.  相似文献   

4.
The traditional solid-state reaction method was used to prepare Ca2Sn2−xMxAl2O9 (M = Ti, Zr, and Hf) ceramics. Then, the impact of an M4+ substitution of Sn4+ on the phase transition, crystal structural parameter, and microwave dielectric properties of Ca2Sn2−xMxAl2O9 (0 ≤ x ≤ 0.4) ceramics were investigated. Ti4+ could not replace the Sn4+ of Ca2Sn2Al2O9 due to its small ionic radius, and the Al-based second phases of Ca2Sn2−xTixAl2O9 ceramics were confirmed by the X-ray diffractometer and EDS map scanning results. With the Zr4+ and Hf4+ substitutions of Sn4+, the SnO2 and CaSnO3 second phases of Ca2Sn2Al2O9 ceramic were inhibited, and the Ca2Sn2−xMxAl2O9 (M = Zr and Hf) (0.05 ≤ x ≤ 0.2) single-phase ceramics with orthorhombic structure (Pbcn space group) were obtained. New MO2 (M = Zr and Hf) and CaAl2O4 second phases appeared in the Ca2Sn2−xMxAl2O9 (M = Zr and Hf) (0.3 ≤ x ≤ 0.4) ceramics, and their contents increased gradually with the increase in x. The Ca2Sn2−xMxAl2O9 (M = Zr and Hf) (0.05 ≤ x ≤ 0.2) ceramics exhibited high Q × f because of their pure phase compositions, and the Q × f of Ca2Sn2Al2O9 ceramic was improved to 77 800 GHz (12.6 GHz) in the Ca2Sn1.9Zr0.1Al2O9 ceramic. The Q × f values of Ca2Sn2−xMxAl2O9 single-phase ceramics were mainly controlled by rc (Sn/M–O) and rc (Al–O). The τf values of single-phase Ca2Sn2−xMxAl2O9 ceramics were related to octahedral distortions. The Zr4+ and Hf4+ substitution of Sn4+ optimized the phase compositions and microwave dielectric properties of the Ca2Sn2−xMxAl2O9 ceramics, and the Ca2Sn1.9Zr0.1Al2O9 ceramic sintered at optimal temperature exhibited excellent microwave dielectric properties (εr = 8.67, Q × f = 77 800 GHz at 12.6 GHz and τf = −69.8 ppm/°C).  相似文献   

5.
This work studied the effect of adding 10 at% Fe, Co or Ni to M-Sn-C mixtures with M = Ti, Zr or Hf on MAX phases synthesis by reactive spark plasma sintering. Adding Fe, Co or Ni assisted the formation of 312 MAX phases, i.e., Ti3SnC2, Zr3SnC2 and Hf3SnC2, while their 211 counterparts Ti2SnC, Zr2SnC and Hf2SnC formed in the undoped M-Sn-C mixtures. The lattice parameters of the newly synthesized Zr3SnC2 and Hf3SnC2 MAX phases were determined by X-ray diffraction. Binary MC carbides were present in all ceramics, whereas the formation of intermetallics was largely determined by the selected additive. The effect of adding Fe, Co or Ni on the MAX phase crystal structure and the microstructure of the produced ceramics was investigated in greater detail for the case of M = Zr. A mechanism is herein proposed for the formation of M3SnC2 MAX phases.  相似文献   

6.
《Ceramics International》2016,42(16):18136-18140
In this study, novel SrCe0.9Yb0.1O3−α-(Na/K)Cl and SrCe0.9Yb0.1O3−α-NaCl-BaCl2 composite electrolytes were synthesized at low temperature (750 °C). The structural properties of the composite electrolytes based on mixtures of SrCe0.9Yb0.1O3−α (SCY) and chlorides ((Na/K)Cl, NaCl-BaCl2) are characterized. The microstructure of the composite electrolytes are observed by scanning electron microscopy (SEM). The electrical conductivity is determined by impedance spectroscopy. The ionic conductivities of the composite electrolytes are higher than that of SCY. Finally, high-performance intermediate temperature fuel cells of the composite electrolytes are obtained.  相似文献   

7.
Dense (Zr, Ti) (C, N) ceramics were fabricated by spark plasma sintering (SPS) at 1900–2000 °C using ZrC, TiCN and ZrH2 powders as raw materials. A single Zr-rich (Zr, Ti)(C, N) solid solution was formed in Zr0.95Ti0.05C0.975N0.025 and Zr0.80Ti0.20C0.90N0.10 ceramics (nominal composition). A Ti-rich solid solution appears in Zr0.50Ti0.50C0.75N0.25 ceramics. The coaddition of TiCN and ZrH2 promoted the densification of (Zr, Ti) (C, N) ceramics by forming solid solutions and carbon vacancies, which could reduce critical resolved shear stress (CRSS) and promote carbon and metal atom diffusion. ZrC-45 mol% TiCN-10 mol% ZrH2 (raw powder composition) possesses good comprehensive mechanical properties (Vickers hardness of 24.5 ± 0.9 GPa, flexural strength of 503 ± 51 MPa, and fracture toughness of 4.3 ± 0.2 MPa·m1/2), which reach or exceed most ZrC-based (Zr, Ti) C and (Zr, Ti) (C, N) ceramics in previous reports.  相似文献   

8.
《Ceramics International》2022,48(18):25689-25695
Al-doped Li7La3Zr2O12 (Al–LLZO) solid electrolytes were sintered at 1150 °C for 8 h in atmosphere of oxygen, argon and air (named as Al–LLZO–O2, Al–LLZO–Ar and Al–LLZO–Air, respectively). All the Al–LLZO samples exhibited a single cubic garnet-type structure. The sample of Al–LLZO–O2 possessed the highest relative density (95.60%) and the largest average grain size among the three Al–LLZO samples. Furthermore, owing to its high relative density and small number of grain boundaries, Al–LLZO–O2 demonstrated a higher lithium-ion conductivity than Al–LLZO–Ar and Al–LLZO–Air.  相似文献   

9.
B-site aliovalent modification of AgNbO3 with a nominal composition of Ag(Nb1-xMx)O3-x/2 (x = 0.01, M = Ti, Zr and Hf) was prepared. The effects of dopants on microstructure, dielectric, ferroelectric and conduction properties were investigated. The results indicate that the introduction of acceptor dopant does not lead to grain coarsening. Zr4+ and Hf4+ doping are beneficial to stabilize the antiferroelectric phase of AgNbO3. Among all the samples, Ti4+ doped AgNbO3 has the minimum resistivity while Hf4+ doped AgNbO3 has the maximum resistivity, therefore, Hf4+ doped AgNbO3 has high BDS. The XPS results indicate that the conduction behaviour is associated with the concentration of oxygen vacancies. This work hints that acceptor dopant is also effective on the microstructure control and chemical modification of AgNbO3-based ceramics.  相似文献   

10.
The first 413-phase entropy-enhanced (Nb0.8Ti0.05Ta0.05V0.05M0.05)4AlC3 (M = Hf, Zr) (EEMAXHf and EEMAXZr) ceramics were successfully consolidated by spark plasma sintering (SPS) using Nb, Ti, Ta, V, Zr, Hf, Al and graphite as initial materials. The formation of solid solution with five transition metals at the M sites of hexagonal M4AlC3 unit cell was confirmed by elemental analyses. Compared with pure Nb4AlC3, both the electrical and thermal conductivities of the entropy-enhanced ceramics showed a slight decrease, which is attributed to the lattice distortion and the increasing lattice defects that prevents the transfer of electrons and phonons. On the other hand, the mechanical properties of entropy-enhanced ceramics were greatly enhanced compared to pure Nb4AlC3. The measured fracture toughness of EEMAXHf and EEMAXZr ceramics were 8.2 MPa·m1/2 and 10.0 MPa·m1/2, respectively, which were increased by 18.8% and 44.9% compared to Nb4AlC3. The compressive strength of EEMAXHf and EEMAXZr ceramics were 987 MPa and 1187 MPa, respectively, being 92.0% and 130.9% higher than that of Nb4AlC3, respectively. EEMAXHf and EEMAXZr ceramics also possessed the higher Vickers hardness of 6.8 GPa and 7.4 GPa, respectively.  相似文献   

11.
A series of (Zr,Ti)Cx (x = 0.7–1.0) samples were fabricated by a modified spark plasma sintering apparatus to investigate the effects of carbon concentration and Ti substitutions on the oxidation behavior. Crushed powders of (Zr,Ti)Cx were oxidized in lab air (N2–20-vol.% O2) from room temperature to 900°C. The results indicated that Zr0.8Ti0.2C0.8, with a nominal carbon concentration x = 0.8, displayed good oxidation resistance, which was attributed to the formation of dense t-(Zr,Ti)O2 oxide solid solution. During the oxidation of (Zr,Ti)Cx, Ti substitutions for Zr enhanced the outward diffusion of carbon, enabling a uniform carbon layer and a Zr–Ti–C–O layer on the surface of carbides. The formed carbon layer improved the oxidation resistance of (Zr,Ti)Cx below 550°C, where carbon is relatively oxidation resistant. Increasing the Ti concentration was found to enhance the oxidation resistance of (Zr,Ti)Cx with an increased oxidation onset temperature (672 ± 2°C for Zr0.8Ti0.2C0.8).  相似文献   

12.
When 1.5 wt% of Li2O–B2O3–SiO2 and 1.5 wt% of Li2O–B2O3–Al2O3 glass‐added (Ca0.7Sr0.3O)1.03(Ti0.1Zr0.9)O2 batch was ball milled for 10~30 h followed by sintering at 950°C in flowing N2‐10%H2 atmosphere, an apparent density of approximately 4.5 g/cm3, a dielectric constant of approximately 26, and a quality factor of roughly about 3300 GHz were demonstrated. A prolonged ball mill time thereafter significantly decreased both of the dielectric properties because of the enhanced reduction of the specimens during sintering. The apparent evidence of a material reaction between the dielectric material and the copper electrode was not observed.  相似文献   

13.
A systematic investigation on doped barium cerate perovskites on conductivity was performed by means of ac electrochemical impedance spectroscopy technique. BaCe0.85?xZrxY0.15O3?δ powders (x = 0, 0.1, 0.2, 0.3, 0.4) were prepared by a modified sol-gel Pechini method and sintered at 1,250 °C–1,450 °C, depending on Zr content, to obtain good densities (93–97% of the theoretical ones). The measured total conductivities for these solid solutions in three different atmospheres were reported: in dry oxygen, in dry nitrogen and wet (0.5 bar H2O) hydrogen (5%H2/Ar) atmospheres. Arrhenius plots recorded in dry oxygen as well as in dry nitrogen showed some residual hydration which remained in the specimens upon initial heating. The compositions with x = 0.3 and 0.4 gave conductivities close to 10?2 S/cm in 5%H2/Ar/H2O atmosphere at 600 °C. The isothermal conductivities values showed a little variation for x from 0.2 to 0.4 between 500 and 800 °C.  相似文献   

14.
M3AlX (M = Ti/Zr/Hf, X = C/N) compounds are promising high‐temperature structural ceramics. However, their interesting polymorphism, thermomechanical stabilities, and thermal and mechanical properties were not fully understood. In this work, the polymorphisms of M3AX phases are investigated by combining first‐principles and lattice dynamics calculations. Only Ti3AlN shows polymorphic transition between the cubic and orthorhombic phases at around 1105 K; but other M3AlX phases do not display similar polymorphic phase transition. Furthermore, the temperature‐dependent heat capacity, thermal expansion, and elastic stiffness of Ti3AlN polymorphic phases are reported for the first time to explore the relationship between crystal structures, and mechanical and thermal properties. Ti3AlN polymorphs show anisotropic thermal expansion and elastic stiffness; and the orthorhombic Ti3AlN is suggested as a promising damage tolerant nitride, which has similar properties with the previously reported Zr3AlN and Hf3AlN.  相似文献   

15.
《Ceramics International》2023,49(20):33011-33019
A series of high-entropy ceramics (HECs) with compositions of La0·2Ce0.2Nd0.2(ZrxY1−x)0.4O2−δ (x = 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0, the corresponding names being HEC(Zr0·5/Y0.5, Zr0·6/Y0.4, Zr0·7/Y0.3, Zr0·8/Y0.2, Zr0·9/Y0.1, Zr1·0/Y0)) were sintered in air at 1600 °C for 10 h. When x is in the range of 0.5–0.7, a fluorite phase is formed. Then, as x exceeds 0.7, a second pyrochlore-structured phase appears, and its content gradually increases with the increasing x. The grain growth of the samples is inhibited by increasing in the relative Zr content. The grain refinement and the formation of second phase reduce the thermal conductivity and reinforce the mechanical properties of the samples. HEC(Zr0.9/Y0.1) has the lowest thermal conductivity (50–500 °C) and brittleness index, as well as the highest fracture toughness among all samples. In addition, La0·2Ce0.2Nd0.2(ZrxY1−x)0.4O2−δ ceramics have excellent thermal stability under Ar atmosphere in 50–1400 °C. The thermal expansion coefficients of the samples marginally change regardless of the variation in x. All samples show higher oxygen barrier property than Y2O3-stabilized ZrO2.  相似文献   

16.
Dielectric capacitors with high energy storage performance are in great demand for emerging advanced energy storage applications. Relaxor ferroelectrics are one type dielectric materials possessing high energy storage density and energy efficiency simultaneously. In this study, 0.9(Sr0.7Bi0.2)TiO3–0.1Bi(Mg0.5Me0.5)O3 (Me = Ti, Zr, and Hf) dielectric relaxors are designed and the corresponding energy storage properties are investigated. The excellent recoverable energy density of 3.1 J/cm3 with a high energy efficiency of 93% is achieved at applied electric field of 360 kV/cm for 0.9(Sr0.7Bi0.2)TiO3–0.1Bi(Mg0.5Hf0.5)O3 (0.9SBT–0.1BMH) ceramic. High breakdown strength of 460 kV/cm in 0.9SBT–0.1BMH ceramic is obtained by Weibull distribution with satisfied reliability. In addition, 0.9SBT–0.1BMH shows outstanding thermal stability of energy storage performance up to 200°C, with the variation being less than 5%, together with satisfying cycling stability and high charge-discharge rate, making the 0.9SBT–0.1BMH ceramic a potential lead-free candidate for high power energy storage applications at elevated temperature.  相似文献   

17.
《Ceramics International》2023,49(16):26530-26539
Perovskite-like rhombohedral distorted solid solutions of BiFe1-х(M1/2Ti1/2)хO3 (M = Co, Ni, Zn, x = 0–0.11) were obtained by solid-phase synthesis. An indicator of the solid solution formation is the change of unit cells parameters, that corresponds to the ionic radii of mixed cations (M1/2Ti1/2)3+ (M = Co, Ni, Zn. Solid solutions of BiFe1-х(M1/2Ti1/2)хO3 (M = Co, Ni), in contrast to BiFe1-x(Zn1/2Ti1/2)xO3 demonstrate ferromagnetic hysteresis pels at room temperature. The x growth in the range from 0.01 to 0.11 for the BiFe1-х(M1/2Ti1/2)хO3 system leads to, the saturation magnetization MS and the remanent magnetization MR increase from ∼0.1 and ∼2.4⋅10−3 emu/g to ∼0.4 and ∼0.038 emu/g respectively. In the same time the coercive force Hc decreases from ∼120 to ∼80 Oe. For the BiFe1-х(Co1/2Ti1/2)хO3 system, a noticeably higher magnetic properties with a more complex dependence on x are observed. The maximum parameter values are observed at x = 0.04–0.05: MS = 0.83 and MR = 0.24 emu/g, Hc = 1.8 kOe. It is suggested that the detected anomalies of Co-containing solid solutions behavior are related to the one-ionic magnetocrystalline anisotropy of Co2+ cations. The BiFe1-х(M1/2Ti1/2)хO3 (M = Co, Ni) samples demonstrate piezoelectric constant d33 up to 7 pC/N. Due to the set of properties the materials obtained can be classified as high-temperature multiferroics.  相似文献   

18.
Ablation resistance of a multi-component carbide (Hf0.2Ti0.2Zr0.2Ta0.2Nb0.2)C (HTZTNC) was investigated using an oxyacetylene flame apparatus. When the surface temperature of the HTZTNC was below 1800 °C, (Nb, Ta)2O5, (Hf, Zr)TiO4, and (Hf, Zr)O2 were found to be the main oxidation products, while at higher temperature, formation of (Hf, Zr, Ti, Ta, Nb)Ox was favored and its content gradually increased with the increase in ablation temperature. Based on the ablation results and thermodynamic simulation analysis, a possible ablation mechanism of HTZTNC was proposed. Active oxidation of TiC and outward diffusion of TiO were demonstrated to occur during the ablation process, which constitute the critical steps for the ablation of HTZTNC. These results can contribute to the design of ablation resistant ultra-high-temperature ceramics.  相似文献   

19.
Lithium-ion batteries, as one of the energy storage devices, has attracted much attention due to its remarkable characteristics. However, they pose safety challenges because of their liquid electrolytes. Solid electrolytes are one of the key candidates to tackle the safety issues in Li-ion batteries. As a solid electrolyte, garnet-type Li7La3Zr2O12 is a promising candidate with its high stability against lithium metal and wide electrochemical window among its counterparts. But, the ionic conductivity is yet to be compared with liquid electrolytes. Hence, doping is still the common strategy to adjust the ionic conductivities. Despite the fact that doping with various elements is well-documented, Lanthanide group element doping is not thoroughly investigated. This research is to study the synthesis of garnet-type Li7La3-xMxZr2O12 (M = Sm, Dy, Er, Yb; x = 0.0–1.0) novel compositions to enlighten the effect of lanthanide group element doping as a function of ionic radius. Results showed that increasing dopant ionic radius improves densification, diminishes Li-ion conduction and, except Yb case, expands the lattice. However, impurity phases formed when the solubility limit is reached, has overall a positive impact on Li-ion conduction. The highest ionic conductivity (0.15 mS/cm) and lowest activation energy (0.18 eV) without impurity phases were obtained from Yb doped LLZO. It was also found that the presence of LiDyO2 improves the ionic conductivity to 0.16 mS/cm.  相似文献   

20.
CaTiO3 perovskite has been proposed as a ceramic waste form for immobilization of 90Sr. Nonradioactive coprecipitated xerogel powders with nominal atomic ratios of Ca:Zr:Ti = 0.75:0.25:1.00 were synthesized to mimic the fate of (Ca0.7590Sr0.25)TiO3 solid solution after complete decay of the Sr and its intermediate product Y to stable Zr when an excess B4+ (Ti and 90Zr) cations will present. Ca:Ti = 1.00:1.00 samples were used as a reference. The powders were heated to various conditions to explore the thermodynamic stability of its oxides. The heated Ca:Zr:Ti = 0.75:0.25:1.00 samples formed a major orthorhombic Ca(Zr1?xTix)O3 perovskite phase. The Ti/(Ti + Zr) ratio of the perovskite preserves its nominal ratio at 600°C. The Zr rejects from the Ca(Zr1?xTix)O3 with further increasing the temperature, following the formation of Ca–Ti–Zr–O secondary phases. This study indicates a tendency of the Zr to segregate from an original (Ca,Sr)TiO3 waste form when the stoichiometry is controlled by the conversion of Sr to Zr (in normal oxidation states).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号