首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
La0.7Sr0.3MnO3±δ powders were fabricated by solid‐state reaction method at 1473 K for 4 h. The precursors were prepared by ball‐milling raw materials for 3, 6, 9, and 12 h, respectively. The crystal structures, particle size, and morphologies of precursors and prepared La0.7Sr0.3MnO3±δ were characterized by XRD, laser particle size analyzer and SEM, respectively. It is found that La0.7Sr0.3MnO3±δ possessed large particle size by ball‐milling raw materials for a long time. Results indicated that La0.7Sr0.3MnO3±δ, synthesized by ball‐milling raw materials for 3 h, exhibited the optimal microwave absorption properties. The maximum reflection loss was ?28.8 dB, and the ?6 dB absorption bandwidth was 5.80 GHz.  相似文献   

2.
《Ceramics International》2015,41(4):5821-5829
We report improvement in the magnetocaloric properties of Ce-doped lanthanum manganites. Polycrystalline La0.7−xCexSr0.30MnO3 (0≤x≥0.3) samples were prepared using the conventional solid-state reaction method with phase purity and structure confirmed using X-ray diffraction. Temperature dependent magnetization measurements and Arrott analysis reveal second order ferromagnetic transition in parent sample and as well as in doped sample with Curie temperature decreasing progressively with increasing Ce-concentration from ~370 K for x=0.0 to 310 K for x=0.30. Magnetic entropy change (ΔSM) was calculated by applying the thermodynamic Maxwell equation to a series of isothermal field dependent magnetization curves. A large ΔSM associated with the ferromagnetic–paramagnetic transition in La0.7−xCexSr0.30MnO3 samples has been observed. The value of ΔSM was found to increase with Ce-doping up to x=0.15 and the highest value of 2.12 J kg−1 K−1 (at ΔH=2 T) was observed for La0.55Ce0.15Sr0.30MnO3 sample near the Curie temperature of 356 K. Also, improved relative cooling power of ~122 J kg−1 was observed for the same sample. Due to the large magnetic entropy change and high Curie temperature, the La0.55Ce0.15Sr0.30MnO3 sample is suggested to be used as potential magnetic refrigerants for magnetic refrigeration technology above room temperature.  相似文献   

3.
In this work, the physical properties of nanocrystalline samples of La0.7Sr0.3Mn1−xFexO3 (0.0 ≤ x ≤ 0.20) perovskite manganites synthesized by the reverse micelle (RM) technique were explored in detail. The phase purity, crystal structure, and crystallite size of the samples were determined using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. All the samples had rhombohedral crystal structure and crystallite size increased with increase in Fe content in La0.7Sr0.3MnO3. The scanning electron micrographs (SEMs) exhibited smooth surface morphology and nonuniform shape of the particles. The optical properties studied using UV-visible absorption spectroscopy revealed a decrease in the absorbance and optical band gap with an increase in Fe content in La0.7Sr0.3MnO3 compound. The temperature-dependent resistivity measurements revealed semiconducting nature of x = 0 and 0.1 samples up to the studied temperature range, while a metal-to-insulator transition was observed at higher Fe doping. Magnetic studies revealed weak ferromagnetism in all the samples and a reduction in the maximum magnetization with an increase in Fe content. A close correlation between electrical transport and magnetic properties was observed with the doping of Fe ion in La0.7Sr0.3MnO3 at Mn site. These results advocate strong interactions associated with the double exchange mechanism among Fe3+ and Mn3+ ions.  相似文献   

4.
《Ceramics International》2016,42(7):8234-8239
The effect of dysprosium incorporation in La0.7Sr0.3MnO3 perovskite manganite on its magnetic properties, magnetocaloric effect and critical behavior was investigated. The temperature dependent magnetization data exhibit a sharp paramagnetic–ferromagnetic transition at TC=307 K, which nature has been identified to be a second-order transition by the scaling laws for magnetocaloric effect. The maximum magnetic entropy change and the relative cooling power are found to be, respectively, 8.314 J/kg K and 187 J/kg for a 5 T magnetic field change without a hysteresis loss, making this material a promising candidate for magnetic refrigeration at room temperature. To study the critical behavior of the paramagnetic–ferromagnetic transition, some related critical exponents (β, γ, and δ) have been also calculated. The values of critical exponents indicate that the present phase transition does not belong to the common transition classes but shows some abnormal variation. We suggest that the induced lattice disordering and magnetic disordering due to Dysprosium incorporation are essential reasons for the presence of a large magnetocaloric effect and of an anomalous ferromagnetic phase transition in the present material  相似文献   

5.
A modified solid-state combustion route was developed for the preparation of nanocrystalline manganite La0.7Ca0.3MnO3 in a single-step process, using metal nitrates and glucose/KNO3 redox mixture. The obtained sample was found to crystallize within O′ type of orthorhombic perovskite structure (space group Pnma), without the presence of other structural phases or impurities. Nanoparticles are found to have particle size in the range 12–35 nm, and to be highly crystalline without the presence of amorphous surface layer. Magnetic measurements show that nanoparticles display bulk-like magnetic properties, with ferromagnetic phase transition at 125 K and the absence of superparamagnetic or spin-glass behavior.  相似文献   

6.
Polycrystalline La0.7Sr0.3MnO3 sample (LSMO) was synthesized by the solid phase reaction; it exhibits the paramagnetic-ferromagnetic transition at Tc = 362 K at the ambient pressure; it is paramagnetic metallic state above Tc and the ferromagnetic metallic state below Tc. It was observed that the pressure effect depends on the temperature range: (a) In the paramagnetic region, the magnetization M hardly changes with the pressure P, that is, ΔM≈0. There exist the antiferromagnetic (AFM) coupled ferromagnetic clusters in the paramagnetic region, and the pressure enhances the AFM coupling. (b) In the temperature range around Tc, the pressure increases M, that is, ΔM > 0, with the concomitant increase in Tc; the average pressure coefficient dTc/dP is 5.40 K/GPa at P = .74 GPa, much smaller than 15.47 and 15.90 K/GPa for La0.7Ca0.3MnO3 and La0.9Ca0.1MnO3, respectively, due to the different distortion degree of MnO6 octahedra in Ca and Sr doped manganites. (c) In the temperature region below Tc, the pressure reduces M, that is, ΔM < 0. M is determined by the competition between the Mn3+-O-Mn4+ double exchange and the interparticle dipolar interaction. The pressure enhances the interparticle dipolar interaction, leading to a significant decrease in magnetization. The resistivity of LSMO exhibits the metallic behavior in the temperature range of 5 K~370 K; it decreases as the applied magnetic field H increases from 0 to 7 T, that is, the magnetoresistance effect which is more significant around Tc. The fitting to the low-temperature resistivity shows that the applied magnetic field reduces the scattering from the grain boundary, electron, phonon, and magnon, especially reduces the electron-electron scattering.  相似文献   

7.
From the perspectives of scientific researches and practical applications, it is desirable to explore high operating temperature ferromagnetic films. The effect of biaxial strain on magnetic properties of (110)-oriented La0.7Sr0.3MnO3 films was studied. High quality La0.7Sr0.3MnO3 films were grown on (110)-oriented perovskite single crystal substrates using pulsed laser deposition, varying substrate-induced misfit strains from ??2.27–0.75%. A remarkable enhancement of Curie temperature has been achieved for (110)-oriented La0.7Sr0.3MnO3 films clamped with small misfit strains (i.e., grown on LAST (110)). The enhanced Curie temperature of (110)-oriented La0.7Sr0.3MnO3 films could be attributed to the misfit strain between the films and the underlying substrates and may have technological implication for applications at high temperature environments.  相似文献   

8.
《Ceramics International》2017,43(3):3274-3283
La0.7Ca0.3MnO3 (LCMO) manganite nanoparticles are synthesized via a sol-gel route at different annealed temperatures. Their structural, morphological, and magnetic properties are investigated. The X-ray diffraction patterns coupled with electron diffraction confirm that all the LCMO samples are single phase and crystallize in the orthorhombic perovskite structure (Pnma space group). The morphology of the samples observed by TEM, reveals a spherical shape with an average grain size lower than 50 nm. The resolved lattice fringes in high-resolution TEM images also reveal the single crystalline nature of the LCMO nanoparticles. Magnetization measurements versus temperature under low magnetic field (0.01 T) show a paramagnetic - ferromagnetic transition for all the samples. The Curie temperature (Tc) is found to be decreased with increasing the annealed temperature. A bifurcation is observed in the zero field-cooled and field-cooled magnetizations, indicating a competition between ferromagnetic and antiferromagnetic interactions in the nanoparticles at low temperatures. Field-cooled hysteresis measurements suggest a cluster glasslike behavior of the nanoparticles. Room temperature and low temperature M - H loops demonstrate that all the samples exhibit ferromagnetic behavior at 5 K, whereas a paramagnetic behavior at room temperature. Resistivity behavior of the LCMO samples shows that they exhibit a metal - insulator transition. Magnetoresistance of ~ 50% at the field up to 8 T was observed at 2 K in the LSCO samples annealed at 600 °C.  相似文献   

9.
《Ceramics International》2021,47(20):28196-28202
(1-x)La0.67Sr0.33MnO3/xMnOδ [(1-x)LSMO/xMnOδ] multicomponent composites were prepared. Their structure and properties were investigated as function of composition. X-ray diffraction and x-ray photoelectron spectroscopy confirmed the coexistence of MnO, Mn2O3 and MnO2. It was found that MnOδ introduction led to decreased average grain size and metal-insulator transition temperature. But it can increase maximum resistivity and magnetoresistance. The corresponding values were 2.0 μm, 370 K, 0.017 Ω cm, −24.7% (10 K, 2 T) for x = 0 and 0.7 μm, 225 K, 1.899 Ω cm and −25.6% (10 K, 2 T) for x = 0.3. However, the ferromagnetic Curie temperature was almost composition-independent with the value of 305 K. These results indicate that forming multicomponent composite by introducing ferromagnetic second phases can suppress the drawbacks of conventional ferromagnetic materials.  相似文献   

10.
《Ceramics International》2015,41(6):7337-7344
This paper reports the structural, magnetic and magnetocaloric properties of La0.7−xEuxSr0.3MnO3 (x=0.1, 0.2 and 0.3) polycrystalline manganites elaborated using the solid-state reaction at high temperatures. The X-ray powder diffraction shows that all the prepared compounds are single phase. La0.6Eu0.1Sr0.3MnO3 is crystallized in the rhombohedral symmetry, whereas a structural transition towards orthorhombic system is observed for x≥0.2. Eu doping was found to induce a decrease of the Curie temperature TC from 343 K (x=0.1) to 272 K (x=0.3). All compounds undergo a large magnetocaloric effect and have consequently potential applications in magnetic refrigeration domain around room temperature.  相似文献   

11.
《Ceramics International》2007,33(6):1129-1132
Manganite systems have been of considerable interest in the recent past due to their potential to operate in wide property range and also to serve as effective magnetic sensing and storing devices when synthesized using stringent conditions. We report a novel citrate gel method, in which La0.7Sr0.3MnO3 system has been synthesized at temperature 800 °C (LSMO800) with the synthesis duration is 6 h. The results have been compared with the sample synthesized at 1050 °C (LSMO1050). The synthesized bulk polycrystalline sample shows single-phase nature with the increase in particle size from ∼50 nm to 300 nm with the increase in the sintering temperature. The magnetization data for LSMO800 shows well-defined hysteresis with saturation magnetization at around 1800 Oe and Curie temperature at 360 K, which is slightly lower than that of LSMO1050, which is 375 K. The results can be well attributed to the grain boundary effects.  相似文献   

12.
The intrinsically core/shell structured La0.6Sr0.4MnO3nanoparticles with amorphous shells and ferromagnetic cores have been prepared. The magnetic, dielectric and microwave absorption properties are investigated in the frequency range from 1 to 12 GHz. An optimal reflection loss of −41.1 dB is reached at 8.2 GHz with a matching thickness of 2.2 mm, the bandwidth with a reflection loss less than −10 dB is obtained in the 5.5–11.3 GHz range for absorber thicknesses of 1.5–2.5 mm. The excellent microwave absorption properties are a consequence of the better electromagnetic matching due to the existence of the protective amorphous shells, the ferromagnetic cores, as well as the particular core/shell microstructure. As a result, the La0.6Sr0.4MnO3nanoparticles with amorphous shells and ferromagnetic cores may become attractive candidates for the new types of electromagnetic wave absorption materials.  相似文献   

13.
We have found large magnetoresistance in ferromagnet/superconductor/ferromagnet heterostructures made of La0.7Ca0.3MnO3 and YBa2Cu3O7. It originates at an increase of the width of the resistive transition when the magnetizations of the ferromagnetic layers are aligned antiparallel. We find that the shape and height of the magnetoresistance peaks are not modified when the angle between current and magnetic field is changed from parallel or perpendicular. Furthermore, we find that the temperature shift of the resistance curves is independent of the current values. This favors the view that the magnetoresistance phenomenon originates at the spin dependent transport of quasiparticles transmitted from the ferromagnetic electrodes into the superconductor, and rules out interpretations in terms of spontaneous vortices or anisotropic magnetoresistance of the ferromagnetic layers.  相似文献   

14.
Cathodic material for sodium-ion rechargeable batteries based on NaxMnO2 were synthesized by glycine nitrate method and subsequent annealing at high temperatures. Different crystal structures with different morphologies were obtained depending on the annealing temperature: hexagonal layeredα-Na0.7MnO2.05 nanoplates were obtained at 850 °C, while 3-D tunnel structured Na0·4MnO2 and Na0·44MnO2, both with rod-like morphology, were obtained at 800 °C and 900 °C, respectively. The investigations of the electrochemical behavior of obtained cathodic materials in aqueous NaNO3 solution have shown that Na0·44MnO2 obtained at 900 °C has shown the best battery performance. Its initial discharge capacities are 123.5 mA h/g, 113.2 mA h/g, and 102.0 mA h/g at the high current densities of 1000, 2000 and 5000 mA/g, respectively.  相似文献   

15.
《Ceramics International》2021,47(18):25281-25286
Improving the magnetoresistance effect of perovskite ceramic materials under a low applied magnetic field to expand its application range is one of the main research directions of this type of material. In this study, La0.7Ca0.3MnO3 was doped with different levels of Sm by the sol-gel method to yield a series of La0.7-xSmxCa0.3MnO3 (LSCMO) polycrystalline ceramics. X-ray diffraction (XRD) results revealed that LSCMO ceramics possessed standard perovskite structures. Scanning electron microscopy (SEM) showed grains closely connected without obvious holes. In addition, the grain size gradually decreased with the increase in Sm doping content. The resistivity temperature curves displayed a clear metal-insulator transition behavior of LSCMO accompanied by a steep change from ferromagnetic to paramagnetic behavior (FM-PM). The metal-insulator transition temperature (Tp) values of the as-obtained LSCMO gradually shifted toward lower temperatures with increase in Sm content. Moreover, resistivity temperature coefficient (TCR) and magnetoresistance (MR) values also gradually increased with Sm doping content. The transport properties in polycrystalline ceramics could be adequately explained by the double exchange model, which would be useful for interpreting the CMR effects when used in magnetic devices.  相似文献   

16.
《Ceramics International》2020,46(3):3166-3176
A large number of studies had shown that the morphology of the sample had a significant effect on the microwave absorption properties and catalytic activity of the sample. Manganese dioxide with different morphologies was synthesized by hydrothermal method through different precursors. The effects of sample morphology and microwave absorption properties on the catalytic activity of the sample in conventional thermal and microwave fields were studied. The results indicated that compared with the conventional thermal field, the catalytic activity of the samples in microwave field were obviously improved, and the activation energy of the reaction were decreased. Compared with the conventional thermal field, the conversion of toluene in microwave thermal field of MnO2(Ac), MnO2(S) and MnO2(N) increased by 59%, 42% and 12%, and the mineralization rate increased by 36%,11% and 2%, respectively, when the catalytic temperature was 150 °C. Compared with the traditional thermal field, the activation energy of the sample MnO2(Ac) in the microwave field was reduced by 88.3 KJ. A series of characterization results showed that the sample MnO2(Ac) had good catalytic activity in the microwave field was due to: MnO2(Ac) had proper microwave absorption properties, large amount of surface functional groups, large specific surface area and rich pore structure. The analysis results of electromagnetic parameters showed that: the reason that the sample MnO2(Ac) had good microwave absorption performance was that the MnO2(Ac) had proper impedance matching, high attenuation constant and Debye dipole relaxation effect.  相似文献   

17.
Composite of (1 − x)La0.85Ag0.15MnO3/x graphene (x = 0, 3, and 5 wt.%) and epoxy resin with a ratio of 4:1 were prepared to investigate the influence of the addition of graphene in (1 − x)La0.85Ag0.15MnO3/x graphene on real and imaginary parts of permittivity, permeability, as well as microwave reflection loss (RL), using a vector network analyzer in the 8–18 GHz of the frequency range. It is found that the value of RL is smaller at x = 3 wt.% (−20.74 dB at 14.85 GHz) and 5 wt.% (−14.81 at 16.50 GHz) compared to at x = 0 wt.% (−8.89 dB at 15.90 GHz). The result indicates that microwave absorption properties significantly improved as a result of the addition of graphene. It is suggested that the addition of graphene enhanced the dielectric loss–related mechanism such as interfacial polarization and conduction loss resulting in an improvement of microwave absorption performance for both x = 3 wt.% and x = 5 wt.% samples. It also shows that the observed enhanced microwave absorption properties may also be influenced by the resistivity of the sample as x = 3 wt.% sample exhibits enhanced microwave absorption properties and the lowest resistivity among the studied samples.  相似文献   

18.
《Ceramics International》2016,42(15):16992-16996
As a new approach of melt-injection-decomposition method, it has been successfully adopted for the synthesis of the complex oxides La0.67Sr0.33MnO3 nanowire arrays. X-ray diffraction studies confirmed the formation of perovskite manganite phase of the sample. Transmission electron microscope and scanning electron microscope characterizations showed a large quantity of one-dimensional nanowires is obtained and the nanowires are continuous, concrete, oriented and rather uniform with an average diameter of 170 nm and length of several tens of micrometers. Magnetic measurements exhibited good ferromagnetic properties at the temperature of 10 K and 300 K respectively. The transition temperature of the complex oxides La0.67Sr0.33MnO3 nanowire arrays is about 350 K, which will endow their great potential applications in magnetoresistance, spintronics or sensor fields at room temperature.  相似文献   

19.

Abstract  

In this paper a wide range of La1−x Sr x MnO3 (x = 0–0.7) perovskites was synthesized by Pechini route, characterized by XRD (including high temperature measurements), XPS, differential dissolution phase analysis, TPR H2, oxygen exchange and tested in N2O decomposition at 900 °C. At low degree of Sr substitution for La (x ≤ 0.3), high catalytic activity was found for perovskites with hexagonal structure (x = 0.1–0.2) and can be related to fast oxygen mobility caused by the lattice disordering during polymorphic phase transition from the hexagonal to cubic structure. For multiphase samples (x > 0.3) increase of activity and oxygen mobility can be attributed to the formation of the layer-structured perovskite–LaSrMnO4 on the surface.  相似文献   

20.
Lanthanum strontium manganite (La1−xSrxMnO3, LSM) powders were synthesized by polymerizable complex method, based on complexation of metal ions (MI) with citric acid (CA) and polyesterification between CA and ethylene glycol (EG). Firstly, the effect of the molar ratio of CA:MI (=1–3) was investigated on the synthesis of La0.7Sr0.3MnO3 powders, which were characterized by thermal analysis (TGA/DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results indicated that the molar ratio CA:MI = 3 is adequate for a good crystallization of pure perovskite phase after calcination, with nanometric crystallite sizes and porous microstructure. For the La0.7Sr0.3MnO3 sample synthesized with CA:MI ratio of 3, it was investigated the effect of calcination temperature, showing that the perovskite structure is better crystallized at 900 °C, without secondary phase formation. Using this same CA:MI ratio and calcination temperature, powders with different Sr content (x = 0.2–0.4) were synthesized, with surface areas of 4–10 m2 g−1. These powders were sintered at 1100 °C to produce porous pellets. The porosity of the sintered pellets and the electrical conductivity, measured by two-probe technique, increased with increasing Sr content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号