首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2022,48(2):1690-1698
Considering the promising efficiency of composites, in the current study, a graphene oxide (GO)-magnetite-Prussian blue (PB) composite material was prepared. The composite exhibited electrical conductivity, magnetic permeability, and permittivity nature, and was evaluated using electromagnetic interference (EMI) shielding studies. GO was developed by the Hummer's method, ferrite (Fe3O4) was incorporated by the sol-gel method, and PB was introduced in the mixture by an in-situ process. The fabricated samples were studied by X-ray diffraction, Raman Spectroscopy, Fourier-transform infrared spectroscopy along with EMI shielding efficiency (SE) evaluation. The SE of ?71.66 dB of reflection losses was measured at a frequency of 1.5 MHz. The GO/Fe3O4/PB composite provided the best results for the detection in the 1–18 MHz frequency range because of its excellent electric and magnetic properties. The obtained results demonstrated that the GO/Fe3O4/PB composite has promising potential applications in EMI shielding.  相似文献   

2.
Polyvinyl chloride (PVC)/graphene and poly(methyl methacrylate) (PMMA)/graphene nanocomposites were made by solution casting technique with graphene weight fractions of 1, 5, 10, 15, and 20%. Multilayer structures of the composites were made by hot compression technique to study their electromagnetic interference shielding effectiveness (EMI SE). Tensile strength, hardness, and storage modulus of the nanocomposites were studied in relation with graphene weight fraction. There has been a substantial increase in the electrical conductivity and EMI SE of the composites with 15–20% filler loading. Differential thermal analysis of the composites shows improved thermal stability with an increase in graphene loading. PMMA/graphene composites have better thermal stability, whereas PVC/graphene composites have superior mechanical properties. About 2 mm thick multilayer structures of PMMA/graphene and PVC/graphene composites show a maximum EMI SE of 21 dB and 31 dB, respectively, in the X band at 20 wt % graphene loading. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47792.  相似文献   

3.
This article aims to investigate the impact of reduced graphene oxide (RGO) nanofillers on the curing kinetics, thermal stability, mechanical modulus, electrical conductivity, and EMI shielding effectiveness of unsaturated polyester resin (UPR). The curing rates of UPR/styrene (60/40 by wt%) mixtures with small amounts of RGO (0.1–0.3 wt%) exhibit slight delays owing to the barrier and scavenger roles of 2-dimensional RGO sheets. Nonetheless, it is observed that within the cured nanocomposites, RGOs are effectively dispersed and firmly bonded to the UPR matrix at interfaces through hydrogen bonding and π-π interactions. Consequently, the nanocomposites display heightened thermal decomposition temperatures and increased residue at 800°C with higher RGO loading content. The addition of RGO notably improves the elastic storage modulus and increases the temperature associated with glass transition-related relaxation. The electrical percolation threshold is attained at a specific RGO loading between 0.2 and 0.3 wt%. Thus, the nanocomposite with 0.3 wt% RGO is characterized to have an electrical conductivity of 1.9 × 10−6 S/cm and an EMI shielding effectiveness of ~9 dB at 8 GHz, for a thickness of 1 mm.  相似文献   

4.
5.
Nanostructured carbon-based polymeric nanocomposites are gaining research interest because of their cost-effectiveness, lightweight, and robust electromagnetic interference (EMI) shielding performance. Till now, it is a great challenge to design and fabricate highly scalable, cost-effective nanocomposites with superior EMI shielding performance. Herein, highly scalable EMI shielding material with tunable absorbing behaviors comprising of low-budget ketjen black (K-CB) reinforced poly(methyl methacrylate) (PMMA) nanocomposites have been prepared using simple solvent assisted solution mixing technique followed by hot compression technique. The morphological investigation revealed the homogeneous distribution of K-CB and strong interfacial interaction in PMMA matrix, which validated the strong reinforcement and other intriguing properties of the nanocomposites. The PMMA nanocomposites showed a low percolation threshold (2.79 wt%) and excellent electrical conductivity due to the formation of 3D conductive network like architecture within the polymer matrix. Specifically, the 10 wt% K-CB nanocomposite possessed a superior EMI shielding performance of about 28 dB for X-band frequency range. Further, a huge change in EMI shielding performance of PMMA nanocomposites is observed with varying thickness. The brand new K-CB decorated PMMA nanocomposites are expected to open the door for next-generation cost-effective EMI shielding materials for academic and industrial applications.  相似文献   

6.
Rheological and thermal properties of isotactic polypropylene (iPP)/organo-montmorillonite (OMMT)/poly(ethylene-co-octene) (PEOc) ternary nanocomposites and iPP/OMMT binary nanocomposites were studied by X-ray diffraction (XRD), rheometry, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) in this paper. The clay layers were mainly intercalated and partially exfoliated and well dispersed in these nanocomposites with the help of maleic anhydride modified polypropylene (PPgMA). Clay layers were mainly localized close to/inside the PEOc-rich phase from the direct observation of morphological study. A compact and stable network structure was formed in ternary composites when clay content was 2 phr (parts per hundred parts of iPP/PPgMA) or higher, which resulted in the lower stress relaxation rate and a pseudo-solid like behavior in low frequency region. Compared with iPP/OMMT composites, iPP/OMMT/PEOc composites had a much stronger ability to resist thermal decomposition. In another word, combining with the filler network, PEOc greatly improved the structural and thermal stabilities of iPP/OMMT nanocomposites.  相似文献   

7.
《Ceramics International》2019,45(10):12989-12993
Ba(Sr1/3Ta2/3)O3 (BST) ceramic was synthesized by a solid-state reaction method. The phase stability, microstructural evolution, and mechanical and thermal properties of the BST ceramic were investigated and characterized to evaluate the potential application of BST as a top coating material for thermal barrier coatings (TBCs). The results show that BST can maintain a stable hexagonal perovskite structure up to 1600 °C. Anisotropic growth of the grains above 1400 °C was observed. Its low elastic modulus and high fracture toughness suggest a high damage tolerance for the BST ceramic. In addition, the moderate coefficient of thermal expansion and superior heat insulation capability of the BST ceramic provide this ceramic the potential to serve as a top coating material of TBCs at higher temperature.  相似文献   

8.
The present paper aims to obtain a sustainable nanocomposite by using bio-based polyamide 11 and biodegradable poly (lactic acid) blend as matrix and graphene nanoplatelets (GNP) as nanofiller. GNP was incorporated in the PA11/PLA blend matrix in the ratio of 0.5-1-3-5-10 wt% through the twin-screw extruder. The crystallinity of PA11 in the blend, which was 12.9%, increased with the inclusion of GNP, and the highest crystallinity value was observed at 20% for the 1GNP sample. The crystallinity of PLA in the blend, which was 2.3%, increased to 4.6% with 5 wt% GNP addition. The inclusion of GNP to PA11/PLA improved the thermal degradation temperatures and increase the char residue. Also, increments were observed for storage modulus, loss modulus, and glass transition temperature of the matrix with the inclusion of GNP. The addition of GNP caused the tensile strength of the matrix to increase first and then decrease at higher amounts due to the agglomerations. 0.5–1 wt% GNP increased tensile strength by 10% and 5%, respectively. Increasing the amount of GNP to 10 wt% led to a sharp decrease in tensile strength by 24%. Overall, GNP is a suitable nanofiller to enhance the thermal and mechanical features of the PA11/PLA blend.  相似文献   

9.
Graphene oxide (GO) and carbon nanotubes (CNTs) and their compound were introduced into semicrystalline poly(l ‐lactide) (PLLA) to prepare the corresponding binary and/or ternary nanocomposites, respectively. The dispersion states of nanofillers in different nanocomposites were investigated using UV‐Vis spectroscopy, scanning electron microscopy (SEM) and rheological measurement. The results showed that when GO and CNTs were simultaneously present in the PLLA matrix, good dispersion states of both GO and CNTs could be achieved and the ternary nanocomposites exhibited percolated network structure. The effects of different nanofillers on the crystallization behavior of PLLA matrix were comparatively investigated under the different crystallization conditions including melt crystallization process (nonisothermal and isothermal crystallization from the melt) and cold crystallization (crystallization occurring from an amorphous state during the annealing process). The results showed that GO and CNTs exhibited apparent synergistic effects in improving crystallization ability and enhancing crystallinity of PLLA matrix. Study on the thermal stability of nanocomposites showed that the presence of nanofillers greatly improved the thermal stability of PLLA matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40143.  相似文献   

10.
Jatropha curcas oil based alkyd/epoxy/GO bionanocomposites were prepared by direct solution blending of alkyd/epoxy blend matrix with GO nano filler. Structures and properties of the bionanocomposites were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and tensile testing. X-ray diffraction and transmission electron microscopy study demonstrates the formation of highly exfoliated GO layers and its homogeneous dispersion throughout the polymer matrix with 1 and 3 wt% GO. However, the intercalated structure is predominant with 5 wt% GO. The homogeneous dispersion and the strong interaction of the GO layers and the polymer matrix induced the significant improvement in thermal and mechanical properties of the bionanocomposites. The tensile strength and elastic modulus of the bionanocomposite increased by 133% and 68% respectively with 3 wt% GO loading. The thermal stability of the bionanocomposite improved by 39 °C and Tg is shifted toward higher temperature by 20 °C as compared to the pristine polymer. Incorporation of GO significantly decreases the curing time of the alkyd/epoxy resin blend.  相似文献   

11.
Stereoregular high polymers of poly(l-lactic acid) (PLLA) (Mw 1.2 × 105, isotacticity 96.0%) and poly(d-lactic acid) (PDLA) (Mw 1.0 × 105, isotacticity 98.6%) were successfully synthesized via melt/solid polycondensation (MP/SSP) using a biogenic catalyst creatinine (CR). The follow-up monitor of the polycondensation products with 13C NMR technique revealed that the polymerization of MP/SSP proceeded in a stereochemical controlled way throughout the whole process as evidenced by the constant high values of isotacticity (97.8–99.4%) of produced polymers. Thermogravimetric analysis demonstrated that the decomposition temperatures (Td,init 324.3 °C, Td, 5% 347.0 °C, Td, max 400.2 °C) of PLLA synthesized with catalyst CR are over 100 °C above those of PLLA synthesized with catalyst SnCl2·2H2O.  相似文献   

12.
Polypropylene/Polybutene-1 (PP/PB-1) blends and nanocomposites containing pristine partially reduced graphene oxide (rGO) and chemically functionalized rGO (FrGO) with silane, and silane grafted with 1,12-dodecanediamine and 1,12-dodecanediol were studied. The effects of the chemical treatments on structure and thermal stability of rGO were first thoroughly investigated. Attenuated total reflectance Fourier infrared (ATR-FTIR) spectroscopy analyses of FrGO evidenced the existence of functional groups on rGO after each chemical treatment, while X-ray diffraction (XRD) results confirmed the effectiveness of the interlayer grafting process through shifting of the basal spacings as witnessed by increased d002 values. Furthermore, thermogravimetric analysis (TGA) revealed that the functionalization of rGO resulted in improved thermal stability of rGO demonstrated by its increased thermal degradation temperature. The PP/PB-1 blends and their rGO and FrGO based nanocomposites were prepared by melt blending masterbatch process in the presence of an acrylic acid modified polypropylene compatibilizer (PP-g-AA). Mechanical testing showed that Young’s modulus and tensile strength of the PP/PB-1 blends significantly improved after co-addition of FrGO and PP-g-AA to form the nanocomposites, but it also endowed a drastic decrease in their elongation at break and especially in their impact strength. XRD analyses attested the successful formation of intercalated nanocomposites, and scanning electron microscopy (SEM) examinations disclosed a two-phase morphology consisting of PB-1 dispersed droplets in the PP matrix. SEM also indicated that the incorporation of PP-g-AA into the blends and the nanocomposites contributed to enhanced adhesion and dispersion of PB-1 phase and FrGO nanoparticles within the polymer matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号