首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1−x)La(Mg0.5Ti0.5)O3 (LMT)–xCaTiO3 (CT) [0<x<1] ceramics were prepared from powder obtained by a nonconventional chemical route based on the Pechini method. The crystal structure of the microwave dielectric ceramics has been refined by Rietveld method using X-ray powder diffraction data. LMT and CT were found to form a solid solution over the whole compositional range. The 0.9LMT–0.1CT composition was refined using P21/n space group, which allows taking into account B-site ordering. The compounds having x⩾0.3 were found to be disordered and were refined using Pbnm space group. Microstructure evolution was also analysed. Dielectric characterization at microwave frequencies was performed on the LMT–CT ceramics. The permittivity and the temperature coefficient of resonant frequency of the solid solutions showed a non-linear variation with composition. The quality factor demonstrates a considerable decrease with the increase of CT content.  相似文献   

2.
Magnetoelectric multiferroics are very promising materials because of their practical applications and fundamental interests. The most widely studied magnetoelectric oxides are ABO3 perovskites. In the paper structural properties of BiFeO3 and Pb(Fe0.5Nb0.5)O3 solid solution are described. The material crystallizes in rhombohedral R3c crystal structure which parameters are presented. Mössbauer spectroscopy was used to study local changes in an iron environment due to Fe/Nb substitution and hyperfine interaction parameters of different local surroundings of iron atoms are presented. The random distribution of B-site sublattice cations was confirmed. Ab initio calculations of the studied solid solution were conducted and theoretical crystal structure parameters were compared with the experimental data. The theoretical magnetic and electric properties are discussed. The local iron magnetic moments were estimated and their dependence on the local surrounding changes is shown. The calculated electrons densities and Bader's topological analysis were used to describe chemical bonding properties.  相似文献   

3.
《Ceramics International》2016,42(7):8402-8408
(Bi0.5Na0.5)0.925Ba0.075(Ti1−xMnx)O3 (x=0, 0.2, 1.0, and 2.0 mol%) ceramics were prepared by solid-state-reaction method to study dielectric, ferroelectric, and depolarization properties. The manganese (Mn) doping can suppress dielectric permittivity and increase relaxor behavior. Coercive field (Ec) increases, while remanent polarization (Pr) decreases as the Mn content increases. Pr exhibits discontinuous anomalies as a function of temperature in all compositions, implying a polarization reorganization of local domains. The depolarization temperature (Td) reaches the highest value (~152 °C) in 0.2%Mn, and decreases as MnO2 content increases. The increased Td in 0.2%Mn is due to two-phase coexistence and structural thermal stability induced by Mn ions. This work suggests that the moderate Mn doping can enhance Td in lead-free piezoceramics for applications at elevated temperatures.  相似文献   

4.
The (1?x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3?xBi(Mg0.5Ti0.5)O3 [(1?x)BCZT–xBMT, x=0.1–0.7] lead-free solid solution ceramics were prepared by the conventional mixed oxide method. The phase structure was investigated by X-ray diffraction and results show that a single perovskite phase was obtained in all of these samples, suggesting that the added BMT diffused into BCZT to form a solid solution. Dense ceramics with relative densities >95% were obtained, and a small amount of BMT (≤50 mol%) acted as grain growth promoter, had an evident effect on grain size growth. Further increase of the BMT content inhibited the grain growth of BCZT samples. Temperature dependence of the dielectric properties showed that all the BCZT–BMT solid solution ceramics exhibited relaxor-like characteristics. With increasing BMT content, the Curie temperature was first increased and then decreased, giving a maximum value of 218 °C for the 0.4BCZT–0.6BMT composition. Furthermore, stable dielectric constants and low losses were obtained with 0.5≤x≤0.7 in the wide temperature range, indicating that the system possess potential for high-temperature application.  相似文献   

5.
《Ceramics International》2022,48(17):24965-24978
YCr0.5Mn0.5O3(YCM)-CaCu3Ti4O12(CCTO) ceramics were prepared using a solid processing method, and their properties were studied. XRD measurements showed that all prepared ceramics had pure perovskite structures. With increasing YCM content, grain size in ceramics decreased, and the resistivity of materials was found to be very sensitive to grain size and grain size distribution. Moreover, ceramics had NTC characteristics, and values of ρ25, B25/75, and Ea ranged from 2.21 × 106–7.30 × 106 Ω cm, 5797–6300 K, and 0.5390–0.5800 eV, respectively. The presence of heterovalent ion pairs in samples suggested that conduction mechanism may have been related to electron hopping. Impedance spectroscopy results showed that excessive doping with YCM resulted in greater contribution from grains to overall resistance of the material. Temperature-dependent electrical relaxation behavior was dominated by short-range movement of charge carriers.  相似文献   

6.
《Ceramics International》2022,48(5):6745-6749
A series of (Ti0.5Nb0.5)C-x wt.% SiC (x = 0, 5, 10, 20) composites were prepared by spark plasma sintering. Dense microstructures with well‐dispersed SiC particles were obtained for all composites. With the increment of SiC content, the Vickers hardness, Young's modulus and fracture toughness increase monotonically. An optimized flexural strength of 706 MPa was achieved in (Ti0.5Nb0.5)C-5 wt.%SiC composite. (Ti0.5Nb0.5)C-20 wt%SiC composite exhibits the highest fracture toughness of 6.8 MPa m1/2. The crack deflections and the suppression of grain growth were the main strengthening and toughening mechanisms. Besides, (Ti0.5Nb0.5)C-20 wt%SiC composite exhibit the highest thermal conductivity of 45 W/m·K at 800 °C.  相似文献   

7.
Polycrystalline alumina, doped with MgO below the solubility limit, was reinforced with sub-micron particles of Ni by infiltration of Ni-nitrate into fired alumina green bodies, followed by reduction and sintering. The Ni particle size and location were monitored both after reduction and after sintering by transmission electron microscopy. Particle occlusion was found to increase with sintering time and temperature, and is correlated with experimentally detected Mg segregation to the Ni–alumina interfaces, resulting in partial depletion of Mg at the alumina grain boundaries and thus their increased mobility. Occlusion of Ni particles reduces the fracture strength and Weibull modulus of the composites, indicating that particle location is a key microstructural parameter for reaching high fracture strengths, and that this can be controlled via grain boundary and interface adsorption.  相似文献   

8.
The mechanical behavior and microstructure of highly densified, spherically shaped, polycrystalline Al2O3–YSZ composites, processed from pseudoboehmite powders by sol–gel is reported here. Processing was carried out by combining nanometric sized α-Al2O3 (120 nm) seeds and YSZ particles of tetragonal structure. The YSZ particles were homogeneously distributed in a coarse-grained matrix of alumina, both inside grains and along grain boundaries. Fracture surfaces, achieved by impact tests showed toughening effects of the zirconia particles. The tetragonality of the YSZ phase stability even after fracture events and fracture toughness measurements by Vickers indentation, where the crack tip interacts with YSZ particles, are all provided and discussed. The local mechanical properties, such as elastic modulus, indentation hardness and the onset of plastic deformation or fracture contact pressure of both YSZ particles and the Al2O3 matrix were quantified by nanoindentation. Evidence of coercive contact pressure was observed in YSZ from indentation stress–strain curves.  相似文献   

9.
《Ceramics International》2015,41(6):7693-7697
(1−x)BaTiO3xBi(Mg1/2Ti1/2)O3 (BT–BMT, x=0–0.2, abbreviated as BT–BMT100x) ceramics were prepared by using a solid state reaction process. Their crystal structure, microstructure, conduction behavior, dielectric and tunability properties were investigated. It is found that the tetragonal phase and a pseudocubic phase coexist for x≤0.15 and transform to a pseudocubic phase at x=0.20. With the incorporation of BMT, BT–BMT becomes more insulating. The activation energies of the conduction are respectively 1.15(1) and 1.54(1) eV for grain and grain boundary of BT–BMT20. Furthermore, an abnormal nonlinear dielectric tunable behavior is observed. The dielectric permittivity first slightly increases until reaching the threshold electric field, and then suddenly decreases. This abnormal nonlinear dielectric behavior is attributed to the synergetic effects of the clamped oxygen vacancies and excessive aggregation of Bi at the grain boundaries.  相似文献   

10.
11.
Lead-free relaxor ferroelectric ceramics (1?x)(K0.5Bi0.5)TiO3xBi(Ni0.5Ti0.5)O3 were prepared by a conventional solid-state route, the phase transition behavior and corresponding electrical properties were investigated. A typical morphotropic phase boundary (MPB) between rhombohedral and tetragonal ferroelectric phases was identified to be in the range of 0.05<x<0.07 where the optimum piezoelectric and electromechanical properties of d33=126 pC/N and kP=18% were achieved. Most importantly, a high Curie temperature ~320 °C, around which the material shows a typical relaxor ferroelectric behavior characterized by the presence of diffuse phase transition and frequency dispersion, was obtained in MPB compositions, significantly higher than those of some existing MPB lead-free titanate systems. These results demonstrate a tremendous potential of the studied system for device applications.  相似文献   

12.
Al2O3–cBN has received considerable attention in the field of ceramic cutting tools due to its high hardness, high wear resistance, and low cost, but poor interfacial bonding affects the performance of the composite. In this study, a novel hot-forging process was used to prepare high-performance Al2O3–cBN composites using Ti(C,N) as a binder. The evolution of the morphology, phase, and microstructure of the hot-forged Al2O3–Ti(C,N)–cBN composites was determined, and the mechanical properties were measured. The relative density of the composites increases significantly after hot forging, and the deformation of the composites increases with the hot-forging temperature. The highest performing Al2O3–Ti(C,N)–cBN composite was prepared by hot forging at 1600°C and has a hardness of 20 GPa, a bending strength of 647 MPa and a fracture toughness of 5.37 MPa m1/2, which are superior to those of a directly hot-pressed sintered composite. However, at hot-forging temperatures higher than 1700°C, Al5O6N and TiB2 are formed in the composite. In the composite hot forged at 1800°C, serrated grain boundaries promote the strength and toughness of the composite to 877 MPa and 6.76 MPa m1/2, respectively. Therefore, the novel hot-forging process is expected to enhance material properties.  相似文献   

13.
Single-phase multiferroic (1-x)Pb(Zr0.52Ti0.48)O3-xPb(Fe0.5Nb0.5)O3 (0≤x≤0.5) thin films were synthesized by sol-gel route and characterized to understand their structural, electrical, and magnetic properties. The films were thermally treated by conventional furnace (CFA) and rapid thermal annealing (RTA). A pyrochlore-free perovskite phase is stabilized only by RTA in samples with high Fe3+/Nb5+ content. The films displayed excellent dielectric and ferroelectric properties in the whole concentration range, with saturated hysteresis loops and remanent polarization values of ~15μC/cm2. Films with x>0.3 showed ferromagnetic behavior at room temperature. Consequently, the multiferroic behavior in the films occurs in a different concentration range than that observed in bulk ceramics. The origin of the weak ferromagnetism is discussed.  相似文献   

14.
《Ceramics International》2016,42(6):6924-6934
Al2O3 ceramic was reliably joined to TiAl alloy by active brazing using Ag–Cu–Ti filler metal, and the effects of brazing temperature, holding time, and Ti content on the microstructure and mechanical properties of Al2O3/TiAl joints were investigated. The typical interfacial microstructure of joints brazed at 880 °C for 10 min was Al2O3/Ti3(Cu,Al)3O/Ag(s.s)+AlCu2Ti+Ti(Cu,Al)+Cu(s.s)/AlCu2Ti+AlCuTi/TiAl alloy. With increasing brazing temperature and time, the thickness of the Ti3(Cu,Al)3O reaction layer increased, and the blocky AlCu2Ti compounds aggregated and grew gradually. The Ti dissolved from the TiAl substrate was sufficient to react with Al2O3 ceramic to form a thin Ti3(Cu,Al)3O layer when Ag–Cu eutectic alloy was used, but the dissolution of TiAl alloy was inhibited with an increase in Ti content in the brazing filler. Ti and Al dissolved from the TiAl alloy had a strong influence on the microstructural evolution of the Al2O3/TiAl joints, and the mechanism is discussed. The maximum shear strength was 94 MPa when the joints were brazed with commercial Ag–Cu–Ti filler metal, while it reached 102 MPa for the joint brazed with Ag–Cu+2 wt% TiH2 at 880 °C for 10 min. Fractures propagated primarily in the Al2O3 substrate and partially along the reaction layer.  相似文献   

15.
《Ceramics International》2022,48(24):36824-36834
The (Al3Ti + Al2O3)/Al–Si composites with three-dimensional co-continuous network structures are fabricated by a pore-forming agent and the pressure infiltration technique. The effect of the Al3Ti content on the mechanical and wear properties of the developed composites is investigated. The Al2O3 (alumina) formation, fracture, and wear mechanisms of the composites are also analyzed. The results demonstrate that the granular Al2O3 particles scatter around Al3Ti phases which are synthesized in-situ during the sintering process. The 20 vol.% (Al3Ti + Al2O3)/Al–Si composites possess the optimal mechanical properties, i.e., compressive and flexural strength of 585 MPa and 489 MPa, respectively, which are 64.8% and 46.0% higher than those of the matrix. The specific wear rate of the composites (16.5 × 10?14 m3/Nm) is 79% lower than that of the matrix. By further increasing the Al3Ti content, the network structure is completed, the wear resistance properties are improved, while the mechanical properties are decreased. The enhanced mechanical properties can primarily be attributed to the three-dimensional co-continuous network structure of the Al3Ti and Al2O3 phases, as well as the pinning effect of Al2O3 particles.  相似文献   

16.
La[Al1−x(Mg0.5Ti0.5)x]O3 (LAMT, x = 0-0.2) ceramics were synthesized by the conventional solid-state reaction method and formed a solid solution. The pure solid solutions were recorded by X-ray diffraction (XRD) in every range. Relative permittivity (εr) and structural stability were greatly affected because the Al3+ site was replaced by [Mg0.5Ti0.5]3+. The total ionic polarizability gradually increased with x, and εr gradually increased. The trend of τf is due to the change in structural stability. The variation in Q × f value increased firstly and then decreased due to the change in the symmetric stretching mode of Al/MgTi–O. The optimum microwave dielectric properties of LAMT were obtained at x of 0.1 after sintering at 1650°C for 5 hours, and εr = 24.9, Q × f = 79 956 GHz, and τf = −33 ppm/°C. The CaTiO3 have a large positive τf (+800 ppm/°C), thus, the τf achieved near zero when CaTiO3 and LAMT (x = 0.1) ceramics were mixed with a certain molar mass, and the optimum microwave dielectric properties of 0.65CaTiO3–0.35LaAl0.9(Mg0.5Ti0.5)0.1O3 were as follows: εr = 44.6, Q × f = 32 057 GHz, and τf = +2 ppm/°C.  相似文献   

17.
A dielectric bulk glass-ceramic of the La2O3–TiO2–SiO2–B2O3 system is developed which is able to fulfill the requirements for dielectric loading-based mobile communication technologies. It is shown that the given dielectric requirements can be fulfilled by glass-ceramic materials without being dependent on ceramic processing techniques. The material exhibited permittivity values of 20 < ɛr < 30, quality factor 2000 GHz < Qf < 10,000 GHz and a temperature coefficient of resonance frequency −100 < τf < +180 ppm/K. A zero τf material with a Qf value of 9500 GHz and ɛr = 21.4 could be achieved at a ceramming temperature Tcer = 870 °C. The material is aimed to provide an alternative to existing, commercially used sintered ceramic materials. Further focus is laid on the investigation of the dominant dielectric loss mechanisms in the GHz frequency range and how they are correlated with the microstructure.  相似文献   

18.
The ceramic samples of compound (1 ? x)Pb(Zr0.52Ti0.48)O3xBi3.25La0.75Ti3O12 (when x = 0, 0.03, 0.05, 0.07, 0.10, 0.15 and 0.20) were prepared by a solid-state mixed oxide method. X-ray diffraction analysis showed that complete solid solutions occurred for all compositions. Perovskite phase with tetragonal crystal structure and corresponding lattice distortion was observed. Scanning electron micrographs of sample surfaces showed equiaxed grains for all compositions. Ferroelectric measurements revealed that the addition of small amount of BLT (x = 0.03) showed high remanent polarization (~33.5 μC cm?2) and low coercive field (~2.74 kV mm?1). Further increasing BLT content could maintain ferroelectric properties of PZT–BLT ceramics. Based on this study, ferroelectric properties of this PZT–BLT ceramic system can be improved for being further used in ferroelectric memory applications.  相似文献   

19.
The use of chromium (III) acetylacetonate as a source of nanometre sized chromium particles for the production of Al2O3–5 vol.% Cr nanocomposites has been investigated. The details of the processing procedure are crucial in determining the mechanical properties of the composite. The highest strength and fracture toughness, 736±29 MPa and 4.0±0.2 MPa m1/2, respectively, were obtained for the nanocomposite hot pressed at 1450 °C. It is shown that the strengthening in Al2O3–5% Cr nanocomposites mainly results from microstructure refinement in that the mean alumina matrix grain size in the optimum composite was 0.68 μm compared with a grain size of 3.6 μm in the monolithic alumina hot pressed under identical conditions. Crack bridging and crack deflection by the nano-sized Cr particles did not occur to any significant extent. The slight improvement in fracture toughness may result from the observed change in fracture mode from intergranular fracture for monolithic alumina to transgranular failure for the nanocomposites.  相似文献   

20.
The dielectric and electrical properties of xPb(Sc1/2Nb1/2)O3yPb(Ni1/3Nb2/3)O3zPbTiO3 (PSNNT 100x/100y/100z) ternary ceramic materials near the morphotropic phase boundary (MPB) were investigated. The MPB follows on almost linear region between PSNNT 58/00/42 and PSNNT 00/68/32 of the binary systems. The maximum electromechanical coupling factor kp=70·7% was found at PSNNT 36/26/38, where ε33T0=3019 and Tc=210°C were obtained. These values are similar to those of the Pb(Sc1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 system and better than those of PZT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号