首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2023,49(2):1980-1986
LiTa2PO8 (LTPO) is a new solid-state electrolyte material, which has high bulk ionic conductivity and low grain boundary ion conductivity. However, the conductivity of materials synthesized by conventional methods is much lower than the theoretically calculated values. In this work, large radius Te ion are doped at Ta (3)-site in order to enlarge the lattice parameters and increase Li content, which are beneficial for increasing ionic conductivity. The Te substitution changes the Ta surrounding environment, increases the binding capacity of Ta–O, and reduces the attraction of oxygen to lithium ions in the system. The prepared dense Li1.04Ta1.96Te0.04PO8 ceramic electrolyte exhibits a low activation energy of 0.193 eV and four times higher ion conductivity (4.5 × 10?4 S cm?1) than undoped samples. Moreover, Li1.04Ta1.96Te0.04PO8 shows a stable cycling performance in the symmetric Li/Li cells and the Li/CPE/Li1.04Ta1.96Te0.04PO8/LiFePO4 batteries with the separation of a thin PEO membrane.  相似文献   

2.
Lithium garnet oxides with 6.5 mol Li, such as Li6.5La3Zr1.5(Ta/Nb)0.5O12, typically crystallise in cubic structure and exhibit excellent room-temperature ionic conductivity close to 1 mS cm?1. However, it is challenging to densify garnet oxides. In this work, we investigated how the co-doping of tantalum (Ta) and niobium (Nb) affects the densification of pressureless sintered garnet electrolytes with compositions of Li6.5La3Zr1.5Ta(0.5?x)NbxO12, where x = 0–0.5. The highest densification (94.5% of relative density) was achieved in Li6.5La3Zr1.5Ta0.1Nb0.4O12 (TN-LLZO) when it was sintered at 1150 °C for 6 h. This TN-LLZO garnet electrolyte delivers an ionic conductivity of 1.04 × 10?3 S cm?1 (at 22 °C) with a low activation energy of 0.41 eV. Our findings demonstrate that the content of dopants (Ta and Nb) plays a critical role in enhancing the sintering performance of garnet ceramics at ambient pressure.  相似文献   

3.
《Ceramics International》2017,43(2):1716-1721
Perovskite-type structured solid electrolytes with the general formula (Li0.25La0.25)1−xM0.5xNbO3 (M=Sr, Ba, Ca, x=0.125) have been prepared by solid-state reaction. Their crystal structure and ionic conductivity were examined by means of X-ray diffraction analysis (XRD), scanning electron microscope (SEM), and alternating current (AC) impedance technique. All sintered compounds are isostructural with the parent compound Li0.5La0.5Nb2O6. Some impurity phase is detected at the grain boundary in the Ba- and Ca-substituted compounds. The substitution of partial Li+ by alkaline earth metal ions has responsibility for the cell volume expansion as determined by the XRD data. The densification is accelerated, with the overall porosity and grain boundary minimized as Sr2+ ions are doped. Among the investigated compounds, the perovskite (Li0.25La0.25)0.875Sr0.0625NbO3 shows a remarkable ionic conductivity of 1.02×10−5 S/cm at room temperature (20 °C) and the lowest activation energy of 0.34 eV in comparison with 0.38 eV and 0.44 eV for the corresponding Ba- and Ca-doped samples, respectively. It is identified that the enhancement of ionic conductivity is attributed to a reduction in activation energy for ionic conduction which is related to an increase in the cell volume.  相似文献   

4.
In this work, perovskite-structured Li0.375Sr0.4375M0.25N0.75O3 (M=Ti, Sn, N=Nb, Ta) solid electrolytes were synthesized by conventional solid state reaction method. Phase compositions, fractured morphologies and conductivities of these compounds were investigated by X-ray diffraction, scanning electron microscope and AC-impedance spectroscopy, respectively. X-ray diffraction analysis confirms that all of Li0.375Sr0.4375M0.25N0.75O3 (M=Ti, Sn, N=Nb, Ta) ceramics present perovskite structure. Pure Li0.375Sr0.4375Ti0.25Ta0.75O3 and Li0.375Sr0.4375Sn0.25Ta0.75O3 perovskite ceramics were obtained. But impurities were detected in Li0.375Sr0.4375Ti0.25Nb0.75O3 and Li0.375Sr0.4375Sn0.25Nb0.75O3. Among all investigated compounds, Li0.375Sr0.4375Ti0.25Ta0.75O3 shows the highest total ionic conductivity of 2.60 × 10?4 S cm?1 at room temperature and the lowest activation energy of 0.347 eV. Conductivities of Li0.375Sr0.4375Sn0.25Ta0.75O3 and Li0.375Sr0.4375Sn0.25Nb0.75O3 were 4.4 × 10?5 S cm?1 and 1.82 × 10?6 S cm?1, respectively. Their conductivities were much lower than Li0.375Sr0.4375Ti0.25Ta0.75O3 and Li0.375Sr0.4375Ti0.25Nb0.75O3.  相似文献   

5.
《Ceramics International》2023,49(12):19905-19915
Cubic Li6.4La3Zr1.4Ta0.6O12 (c-LLZTO) electrolyte is one of the most promising solid electrolytes. However, it is rather difficult to promote its electrical performance while reducing process parameters. Therefore, Li4GeO4 is applied as the additive in liquid sintering of LLZTO ceramics in this study. The LLZTO@Li4GeO4/Li2O composite electrolyte sintered at 1180 °C for 3 h performs a significantly promoted microstructure and electrical performance, the ionic conductivity of which reaches 5.77 × 10−4 S cm−1 at 25 °C. The Li4GeO4/Li2O eutectic phase contributed prominently, in which the high concentration of Li+ seaming the LLZTO grains tightly. Meanwhile, Li+ conduction in the consecutive conductive pathways constructed by [GeO4] groups among the grains was greatly stimulated. With the modification of the grain boundary, an improved garnet electrolytes/Li anode interface performance is produced. The Li/Au|LLZTO@Li4GeO4/Li2O|Au/Li symmetrical cell is able to cycle stably for more than 500 h at the current density of 0.1 mA cm−2 at room temperature.  相似文献   

6.
The Li content and anion lattice of Li4SiO4 were modified to improve ionic conductivity. Li2CO3 and Si3N4 were mixed in a ratio of Li/Si?=?4.5 and heated in NH3 at 820?°C, which resulted in the formation of the oxynitride, Li4.1SiO3.9N0.1. Powder X-ray diffraction analyses revealed Li4.1SiO3.9N0.1 and Li4SiO4 to be isostructural with a subtle variation in the lattice constants. Diffuse-reflectance absorption spectroscopy, however, showed a significant decrease in the band gap, from 5.6?eV in Li4SiO4 to 4.8?eV in Li4.1SiO3.9N0.1. X-ray photoelectron spectra of the Li 1s and Si 2p levels revealed enhanced lattice covalency in Li4.1SiO3.9N0.1 compared to the oxide phase. The ionic conductivity of Li4SiO4 and Li4.1SiO3.9N0.1 were measured by ac impedance spectroscopy over the temperature range 100–400?°C. Non-linear fitting analysis of the equivalent circuit revealed that the ionic conductivity of Li4.1SiO3.9N0.1 was approximately one order of magnitude higher than that of Li4SiO4.  相似文献   

7.
Ta‐doped cubic phase Li7La3Zr2O12 (LLZ) lithium garnet received considerable attention in recent times as prospective electrolyte for all‐solid‐state lithium battery. Although the conductivity has been improved by stabilizing the cubic phase with the Ta5+ doping for Zr4+ in LLZ, the density of the pellet was found to be relatively poor with large amount of pores. In addition to the high Li+ conductivity, density is also an essential parameter for the successful application of LLZ as solid electrolyte membrane in all‐solid‐state lithium battery. Systematic investigations carried out through this work indicated that the optimal Li concentration of 6.4 (i.e., Li6.4La3Zr1.4Ta0.6O12) is required to obtain phase pure, relatively dense and high Li+ conductive cubic phase in Li7?xLa3Zr2?xTaxO12 solid solutions. Effort has been also made in this work to enhance the density and Li+ conductivity of Li6.4La3Zr1.4Ta0.6O12 further through the Li4SiO4 addition. A maximized room‐temperature (33°C) total (bulk + grain boundary) Li+ conductivity of 3.7 × 10?4 S/cm and maximized relative density of 94% was observed for Li6.4La3Zr1.4Ta0.6O12 added with 1 wt% of Li4SiO4.  相似文献   

8.
《Ceramics International》2022,48(9):12142-12151
The performance of sodium superionic conductor (NASICON)-type LiZr2(PO4)3 (LZP) solid electrolytes for Li-ion batteries is dependent on their ion transportation properties. Therefore, to achieve high stability, ionic conductivity, and good compatibility with Li, the LZP solid electrolyte has chosen and doped with Al to improve aforesaid properties. Also, the effect of the dopant on various parameters has been investigated via MD simulations and experimentally. In this study, molecular dynamics (MD) simulations were used to investigate the effect of Al doping on the ion transport properties of Li1+xAlxZr2?x(PO4)3 (LAZP, x = 0.0–1.0) solid electrolytes. A facile solid-state reaction was used to synthesize both pristine and Al-doped solid electrolytes and to estimate the effect of doping on the ionic conductivity and ion diffusion in LZP. Computational and experimental results provided strong evidence of improved ion conductivity and diffusion in LZP owing to the presence of the Al dopant. Furthermore, the computational results agreed well with the experimental results, thereby validating the computational model. A maximum ionic conductivity of σLi = 2.77 × 10?5 S cm ?1 (for x = 0.2) was obtained. Enhanced ionic conductivity was observed with Al dopants owing to the creation of interstitial Li ions through a reduction in grain boundary resistance. However, a further increase in the amount of dopant reduced the ionic conductivity of LZP owing to Li-ion trapping at the most stable and metastable sites around the Al insertions. Doped LZP solid electrolytes are suitable for use in energy storage devices because of their enhanced ionic conductivity compared to that of pristine LZP.  相似文献   

9.
Impedance spectroscopy studies of the interface between lithium and ionic liquid (IL) showed the formation of a film (solid electrolyte interface, SEI), protecting metal from its further dissolution. Consequently, the potential of metallic lithium immersed in an electrolyte containing Li+ cations may be described as a Li|SEI|Li+ system, rather than simply Li/Li+. The potential of lithium-metal in a series of ionic liquids (and in a number of molecular liquids) containing Li+ cation (0.1 M) was measured versus the Ag|(Ag+ 0.01 M, cryptand 222 0.1 M, in acetonitrile) reference. The lithium-metal potential (E(Li|SEI|Li+)) was ca. −2.633 ± 0.017 V in ILs based on the [N(CF3SO2)2 ] anion, while −2.848 ± 0.043 V in ILs containing [BF4 ] anion (the difference is ca. 200 mV). In the case of ILs based on the triflate anion ([CF3SO3 ]), the cation of ionic liquid also influences the E(Li|SEI|Li+) value: it was ca. −1.987 ± 0.075 V for imidazolium based cations and much lower (−2.855 V) for the pyrrolidinium based cation. In ionic liquid based on the imidazolium cation and hexafluorophosphate anion ([PF6 ]), the Li/SEI/Li+ potential was −2.245 V. The Li|SEI|Li+ potential measured in cyclic carbonates was −2.780 ± 0.069 V while in dimethylsulfoxide showed the lowest value of ca. −3.285 V. The measured potentials were also expressed versus the formal potential of the ferrocene/ferrocinium redox couple, obtained from cyclic voltammetry.  相似文献   

10.
Ni1?xLixO (x = 0, 0.03, 0.06, 0.09) powders were prepared by sol–gel method combined with sintering procedure using Ni(CH3COO)2·4H2O and citric acid as the raw materials and alcohol as solvent. The crystal structures of the samples were investigated by X-ray diffraction and Raman spectroscopy. The thermoelectric properties, such as the electrical conductivity, the Seebeck coefficient and the thermal conductivity were measured. The results showed that all the samples are p-type semiconductors. The electrical conductivity increases with the increase of the temperature, which indicates that the substitution of Li+ for Ni2+ can increase the concentrations and mobility of the carriers. The thermal conductivity decreases remarkably with the increase of the Li doping content, which indicates that Li doping can enhance the scattering of phonon. However, the Seebeck coefficient will decline with the increase of the Li doping content. As results of the increase of electrical conductivity and reduction of thermal conductivity, Li doping can increase the figure of merit (ZT) of NiO, the ZT value reach 0.049 at 770 K for Ni1?xLixO with x = 0.06.  相似文献   

11.
In this paper, high-entropy (MgCoNiCuZn)1-xLixO oxides (x = 0, 0.1, 0.15, 0.2, and 0.3) were synthesized via reactive flash sintering (RFS), and the effect of RFS process on the microstructure and electrical property of the materials were studied. The Li-doped materials exhibited a mixed ionic–electronic transport behavior. The oxidation of Co2+ into Co3+ upon Li incorporation into the materials synthesized via the conventional solid-state reaction route was not evidenced in the flash sintered materials. Instead, the charge unbalance in the Li-doped materials synthesized via RFS was compensated by oxygen vacancies and holes in the valence band of the oxides, which were accounted for the ionic conduction and electronic conduction, respectively. The ionic conductivity increased upon increasing the Li concentration as more oxygen vacancies were formed. The attraction between defects with different charges (LiM/ and VO••), which formed defect complexes, led to a decrease in the mobility of the defects, thus resulting in a less pronounced increase in the ionic conductivity at high Li concentrations. The change in the charge compensation mechanism of the materials indicates that the microstructure of such kind of oxides could be altered through RFS, and thus the property may be manipulated.  相似文献   

12.
Metallic doping can stabilize cubic phase Li7La3Zr2O12 (LLZO) solid electrolyte for high conductivity, due to the enhanced vacancies and disordered Li-site. However, the understanding of metallic doping in the crystal lattice during the high-temperature sintering process is still not clear. In present study, a gradient series of Fe doped LLZO are formulated via solid-phase reaction, and then investigated through crystal analysis and morphological characterization. Pair distribution function essay implies that doped Fe3+ promotes random distribution of Li+ over the available sites in the located crystal. Additionally, the ceramic morphology confirms that the particles sizes in LLZO pellets suddenly grow above 1000 ℃, and Fe doping can obviously suppress Li loss above 600 ℃. As a result, the LLZF0.15 exhibits the relatively high ionic conductivity of 1.99 × 10–5 S cm–1 at 45 ℃.  相似文献   

13.
《Ceramics International》2022,48(1):157-163
NASICON-type structured compounds Li1+xMxTi2-x(PO4)3 (M = Al, Fe, Y, etc.) have captured much attention due to their air stability, wide electrochemical window and high lithium ion conductivity. Especially, Li1.3Al0.3Ti1.7(PO4)3 (LATP) is a potential solid electrolyte due to its high ionic conductivity. However, its actual density usually has a certain gap with the theoretical density, leading the poor ionic conductivity of LATP. Herein, LATP solid electrolyte with series of SnO–P2O5–MgO (SPM, 0.4 wt%, 0.7 wt%, 1.0 wt%, 1.3 wt%) glass addition was successfully synthesized to improve the density and ionic conductivity. The SPM addition change Al/Ti–O bond and P–O bond distances, leading to gradual shrinkage of octahedral AlO6 and tetrahedral PO4. The bulk conductivity of the samples increases gradually with SPM glass addition from 0.4 wt% to 1.3 wt%. Both SPM and the second-phase LiTiPO5, caused by glass addition, are conducive to the improvement of compactness. The relative density of LATP samples increases first from 0 wt% to 0.7 wt%, and then decreases from 0.7 wt% to 1.3 wt% with SPM glass addition. The grain boundary conductivity also changes accordingly. Especially, the highest ionic conductivity of 2.45 × 10?4 S cm?1, and a relative density of 96.72% with a low activation energy of 0.34 eV is obtained in LATP with 0.7 wt% SPM. Increasing the density of LATP solid electrolyte is crucial to improve the ionic conductivity of electrolytes and SPM glass addition can promote the development of dense oxide ceramic electrolytes.  相似文献   

14.
Lithium-sulfur (Li–S) batteries are attractive due to their high theoretical energy density. However, conventional Li–S batteries with liquid electrolytes undergo polysulfide shuttle-effect and lithium dendrite formation during charge/discharge process, leading to poor electrochemical performance and safety issues. Garnet type Li7La3Zr2O12 (LLZO) solid-state electrolyte (SSE) restricts the penetration of polysulfides and exhibits high ionic conductivity at room temperature (RT). Herein, Li6.5La3Zr1.5Nb0.5O12 (LLZNO) ceramic electrolyte using Li3PO4 (LPO) as sintering aids (LLZNO-LPO) is prepared by the rapid sintering method and is applied to construct a shuttle-effect free solid-state Li–S battery. The SSE displays high conductive pure cubic-LLZO phase; during the rapid sintering, LPO melts and junctions the voids between the grains, thus improves Li+ conductivity. As a result, the LLZNO-LPO ceramic electrolyte with Li+ conductivity of 4.3 × 10?4 S cm?1 and high critical current density (CCD) of 1.2 mA cm?2 is obtained at RT. The Li–S solid-state battery which utilizes LLZNO-LPO ceramic electrolyte can deliver an initial discharge capacity of 943 mA h·g?1 and 602 mA h·g?1 retention after 60 cycles. In the same time, the initial coulombic efficiency is as high as 99.5%, indicating that the SSE can effectively block the polysulfide shuttle towards the Li anode and fulfill a shuttle-free Li–S battery.  相似文献   

15.
《Ceramics International》2017,43(7):5642-5646
Perovskite-structured Li3/8Sr7/16Zr1/4Nb3/4O3 solid-state Lithium-conductors were prepared by conventional solid-state reaction method. Influence of sintering aids (Al2O3, B2O3) and excess Lithium on structure and electrical properties of Li3/8Sr7/16Zr1/4Nb3/4O3 (LSNZ) has been investigated. Their crystal structure and microstructure were characterized by X-ray diffraction analysis and scanning electron microscope, respectively. The conductivity and electronic conductivity were evaluated by AC-impedance spectra and potentiostatic polarization experiment. All sintered compounds are cubic perovskite structure. Optimal amount of excess Li2CO3 was chosen as 20 wt% because of the total conductivity of LSNZ-20% was as high as 1.6×10−5 S cm−1 at 30 °C and 1.1×10−4 S cm−1 at 100 °C, respectively. Electronic conductivity of LSNZ-20% is 2.93×10−8 S cm−1, nearly 3 orders of magnitude lower than ionic conductivity. The density of solid electrolytes appears to be increased by the addition of sintering aids. The addition of B2O3 leads to a considerable increase of the total conductivity and the enhancement of conductivity is attributed to the decrease of grain-boundary resistance. Among these compounds, LSNZ-1 wt%B2O3 has lower activation energy of 0.34 eV and the highest conductivity of 1.98×10−5 S cm−1 at 30 °C.  相似文献   

16.
The solid-phase method is used to synthesize polycrystalline samples of zirconium dioxide stabilized with 10% Y2O3 (or content) and up to 3% Li2O. It is found that the conductivity of the samples increases substantially when Li2O is added and reaches its maximum value at 1.7% Li2O. The conduction activation energy decreases from 0.85 eV in samples with no Li2O added to 0.56 eV in samples containing 1.7% Li2O. It is suggested that lithium ions in the ZrO2 cubic lattice form two types of defects: substitution effects — Li Zr 3? and interstitial defects — Li i + . The latter greatly increase the electrical conductivity of the samples.  相似文献   

17.
《Ceramics International》2022,48(7):9371-9377
Cubic Li7-3xGaxLa3Zr2O12 is a cubic phase with a space group of I-43d instead of Ia-3d. This structure is more conducive to the migration of lithium ions. However, the effect of Ga on the size and environment of lithium ion transport channels has not been researched. In this work, Li7-3xGaxLa3Zr2O12 (x = 0–0.25) was formulated, and the crystal structure was obtained by neutron diffraction. The results indicated that the minimum channel size to control Li+ migration in LLZO was the bottleneck size between the Li2 and Li3 sites (bottleneck size 2), and compared with lanthanum ions, the zirconium ions were closer to lithium ions. As the Ga content increased, bottleneck size 2 levelled off, while the lithium concentration and the distance between skeleton ions and lithium ions decreased. As a result, the lithium ionic conductivity primarily increased and then decreased. When doping 0.2 pfu of Ga, LLZO exhibited the highest lithium ionic conductivity of 1.45 mS/cm at 25 °C due to the coordinated regulation of Li+ concentration, bottleneck size, and the distance between skeleton ions and lithium ions.  相似文献   

18.
A series of ceria‐based nanocomposites consisting of lanthanum and strontium codoped ceria with composition Ce0.89La0.07Sr0.04O1.925 (CL7S4) and eutectic mixture of carbonates Li2CO3‐Na2CO3 (LNCO) have been prepared by mixing nanosize powders of CL7S4 and LNCO. Samples have been characterized using differential thermal analysis, X‐ray diffraction, scanning electron microscopy combined with energy‐dispersive spectroscopy, thermal expansion, and impedance spectroscopy. A sharp increase in ionic conductivity is observed in all the composite specimens corresponding to superionic transition. Sample containing 35 wt% of carbonate shows the maximum conductivity (2.56 × 10?1 S/cm at 500°C) with activation energy of conduction, Ea 0.23 eV.  相似文献   

19.
《Ceramics International》2022,48(4):5035-5039
In this work, the Al doped high entropy perovskite Li0.2La0.2Ca0.2Sr0.2Ba0.2TiO3 ceramic is synthesized by using a solid state reaction method, and the effect of different doping amount on the crystal structures and conductivity are also studied. The result proves that doping leads to a positive influence on the conductivity of ceramic. The material of Li0.1(LiLaCaSrBa)Ti0.9Al0.1O3 (LLCSBTA-0.1) exhibits a high total conductivity with approximately 3.92 × 10-7 S cm-1 at 30 °C and an activation energy of 0.39 eV. The beneficial result can be ascribed to the increase of Li + concentration. The Li0.2La0.2Ca0.2Sr0.2Ba0.2TiO3 presents a pure cubic perovskite structure, but with partial tetragonal structure due to the addition of Al2O3. However, these high entropy perovskite ceramics showed porous structures which are unfavourable for lithium ion conduction. The electrochemical property of the Li0.1(LiLaCaSrBa)Ti0.9Al0.1O3 as electrode is investigated as well. The results show that the Li0.1(LiLaCaSrBa)Ti0.9Al0.1O3 electrode exhibits good cyclability and stability for the insert-extraction of lithium ions with the specific capacity of 58.6 mA h g?1.  相似文献   

20.
Novel LLZTO@Li4GeO4/Li2O composite electrolytes have been successfully produced through liquid sintering Li6.4La3Zr1.4Ta0.6O12 via the 3Li2O-2GeO2 (LGO1.5) additive at 1140 °C for 3 h in air atmosphere. The Li-Ge-O additive performs a prominent role in fabricating compact connections among LLZTO grains and accelerating their densification procedure. Moreover, the additive acts as a bridge to promote Li+ transportation in the grain boundary domains. Consecutive Li+ conduction pathways are constructed inside the ceramics correspondingly. A considerably enhancement for the electrical performance of the garnet-type electrolytes is realized. The composite electrolyte with 2wt% LGO1.5 exhibits a high ionic conductivity of 5.57 × 10?4 S·cm?1 at 25 °C, the relative density of which reaches 95.8%. It is also capable of withstanding a high voltage up to 6 V (vs. Li/Li+) and a large critical current density of 0.65 mA·cm?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号