首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of Mn4+ ions activated A2MgWO6 (A = Ba, Sr, Ca) phosphors, showing bright red emission peaks appeared around 700 nm under the excitation of 355 nm, were synthesized by the solid-state reaction. The crystal structures and photo-luminescent (PL) properties of these synthesized phosphors were deeply investigated with the aids of X-ray diffraction measurement (XRD), and the temperature dependent PL/decay curves in detail. The optimum doping concentration of Mn4+ ions in A2MgWO6 (A = Ba, Sr, Ca) lattices were studied through the relationship between the Mn4+ ions doping concentrations and the luminescent intensities. The thermal stability of the synthesized red-emitting phosphors was checked based on the temperature-dependent PL intensities ranging from 7 to 510 K. Comparative studies of the luminescent properties for Mn4+ ions in isostructural A2MgWO6 (A = Ba, Sr, Ca) lattice with double perovskite structure were studied. The results indicate that the synthesized red-emitting phosphors are the ideal choice for white light emitting diodes (W-LEDs).  相似文献   

2.
Aluminum oxynitride (AlON) ceramics doped with different sintering aids were synthesized by spark plasma sintering process. The microstructures, mechanical, and optical properties of the ceramics were investigated. The results indicate that the optimal amount of sintering aids is 0.06 wt% La2O3 + 0.16 wt% Y2O3 + 0.30 wt% MgO. The addition of La3+ and Mg2+ decreases the rate of grain boundary migration in ceramics, promotes pore elimination, and inhibits grain growth. The addition of Y3+ facilitates liquid-phase sintering of AlON ceramics. Moreover, the addition of Mg2+ effectively promotes twin formation in the ceramics, which hinders crack propagation and dislocation motion when the ceramics are loaded. Hence, the AlON ceramic doped with 0.06 wt% La2O3 + 0.16 wt% Y2O3 + 0.30 wt% MgO exhibits a relative density of 99.95%, an average grain size of 9.42 μm, and a twin boundary content of 10.3%, which contributes to its excellent mechanical and optical properties.  相似文献   

3.
《Ceramics International》2017,43(15):11552-11555
Hybrid organic-inorganic halide perovskite (CH3NH3PbI3) materials have broad applications such as photovoltaics, light emitting diodes, and sensors. However, one of the major drawbacks of these materials is their sensitivity to moisture. Here, a new promising perovskite nanocrystal: tetramethylammonium lead triiodide (CH3)4NPbI3 has been introduced and fabricated. Investigation of morphology, structural, optical and stability properties was done by XRD, SEM, TEM, and UV–visible. Characterization prove that the processed powder is in the form of nanoparticles and drop cast film has a hexagonal rod-like morphology. Crystal structure was determined by powder x-ray diffraction and electron diffraction pattern. It shows a perovskite crystal structure with a hexagonal unit cell. Powder XRD after 45 days suggests that this new compound is stable in humid conditions. Direct optical band gap of this material was obtained by transforming diffuse reflectance spectrum to Kubelka-Munk spectrum and it was 2.66 eV.  相似文献   

4.
Magnetic properties in perovskite titanates ATiO3-δ (A = Ca, Sr, Ba) were investigated before and after arc melting. Crystal structure analysis was conducted by powder synchrotron X-ray diffraction with Rietveld refinements. Quantitative chemical element analysis was carried out by X-ray photoelectron spectroscopy. Magnetic measurements were conducted by vibrating sample magnetometer and X-ray magnetic circular dichroism (XMCD). The magnetic properties are found to be affected by impurities of 3d elements such as Fe, Co, and Ni. Depending on the composition and crystal structure, the occupation of the magnetic ions in perovskite titanates is selectively varied, which is interpreted to be the origin of the different magnetic behaviors in arc-melted perovskite titanates ATiO3-δ (A = Ca, Sr, Ba). In addition, both formation of oxygen vacancies and the reduction of Ti4+ to Ti3+ during arc-melting also play a role as proven by XMCD. Nevertheless, preferential site occupation of magnetic impurities is dominant in the magnetic properties of arc-melted perovskite ATiO3-δ (A = Ca, Sr, Ba).  相似文献   

5.
The novel walnut shape MAPb0.95Mn0.05I3-xClx film was successfully synthesized by a one-step method followed by chlorobenzene anti-solvent treatment. The bandgap energy and PL intensity of perovskite film can be effectively tuned by Mn and Cl co-doping. The enlarged bandgap energy is mainly attributed to the synergistic effect of strengthened Pb-I interaction, Cl incorporation and smaller electronegativity of Mn dopants. The stronger coupling between the Mn d- and Pb p-bands, extended carriers diffusion length and more emitting defect-associated states caused by Mn and Cl co-doping are the main reasons for the enhancing PL intensity of MAPb0.95Mn0.05I3-xClx walnut shape film. This work not only helps to in-depth understand the correlation between co-doping elements and optical properties of nanostructured perovskite films, but also provides important strategy for future designing the lower-toxic nanostructured perovskite materials with enhanced electrical and optical properties.  相似文献   

6.
Double perovskite Sr2FeReO6 (SFRO) powders were synthesized by so-gel process and annealed in argon atmosphere. Their structural, dielectric, magnetic, electrical, and optical properties were comprehensively investigated. It was found that the SFRO powders possessed a tetragonal crystal structure with I4/m space group and exhibited spherical shapes with some agglomeration due to the magnetic interactions between particles of the powders. Quantitative energy dispersive X-ray spectrometer data revealed the atomic ratio of Sr, Fe, Re, and O elements close to the nominal values of 2:1:1:6. X-ray photoemission spectroscopy spectra reveal two species of Re5+ and Re6-7+ coexist in the SFRO powders. Sr, Fe, and O elements are present as Sr2+, Fe3+, and lattice oxygen, respectively. Dielectric property measurements revealed a Maxwell–Wagner type dielectric dispersion in the SFRO ceramics. Ferromagnetic behavior was verified by the observed magnetic hysteresis loops in the SFRO powders at 2 K and 300 K. The remanent magnetization and coercive field at 2 K were 8.23 emu/g and 3152 Oe, respectively, and the saturated magnetization was estimated to be 21.8 emu/g (or 2.0 μB/f.u.), smaller than the theoretical value of 3.0 μB/f.u. owing to the presence of the anti-site defects. Magnetic Curie temperature (TC) was estimated to be 432.3 K. Intergranular tunneling magnetoresistance and hysteresis phenomena were observed in the SFRO powders at low temperatures, and the MR (2 K, 6 T) was measured to be −15% and −10% for MR (100 K, 6 T). Electrical transport and optical absorption measurements demonstrate the semiconducting nature of the SFRO with optical band gap of 1.39 eV. The electrical transport process follows the small polaron variable range hopping theory. The unique combination of high TC ferromagnetism with the semiconductivity enables the SFRO to be a promising candidate for spintronic devices.  相似文献   

7.
《Ceramics International》2021,47(23):32666-32674
In this work, CuO-doped MgO-Al2O3-SiO2 based glasses have been synthesized successfully through conventional melt quenching method, and the effect of CuO content on the structure and properties of the glasses was investigated. The results revealed that CuO could act as a glass modifier to depolymerize the silicate network and its effect was superior to that of MgO. In addition, the main crystalline phase was α-cordierite (Mg2Al4Si5O18), indicating that copper ions did not participate in the formation of the crystalline phase, and still existed in the interstitial position. The characteristic absorption band around 750 nm owing to the 2B1g2B2g transition of Cu2+ ions appeared on the optical transmittance spectra, which confirmed the existence of Cu2+ ions in the tetragonally distorted octahedral sites. The luminescence center was caused by Cu+ ions, and the luminescence lifetime decreased with the addition of CuO. The dielectric constant and dielectric loss increased with the increase of CuO content, indicating an increase in the insulation performance. Finally, the obtained chromaticity coordinate parameters indicate that the prepared CuO-doped magnesium aluminosilicate-based glasses can be applied in optical and electrical fields.  相似文献   

8.
《Ceramics International》2022,48(6):7629-7635
BaTiO3 ceramics doped with double perovskite Sr2KMoO6 (BT-SKM) are fabricated via solid-state reaction technology. The effects of SKM dopants on the structure, band gap and electrical/magnetic properties of BT are systematically studied. XRD and Raman spectra analysis show polycrystalline perovskite structure of the samples, which confirms the structural changes. With the addition of SKM dopants, the grain size of the samples decreases significantly. The band gaps of doped BT samples reduce, and the minimum band gap of BT-SCM is 1.77 eV, which is apparently reduced compared with the band gap of pure BT of 3.22 eV. However, the ferroelectric properties are weakened in samples doped with SKM. This ascribes to the introduction of more oxygen vacancies by dopants, which impedes the switching of domains, resulting in deterioration of ferroelectric properties. Furthermore, ferromagnetism of BT-SNM is observed, which may be attributed to the long-range exchange interaction between Ni2+ ions and oxygen vacancies. These results reveal the potential applications of these perovskite oxides in photovoltaic and memory devices.  相似文献   

9.
In this work, the physical properties of nanocrystalline samples of La0.7Sr0.3Mn1−xFexO3 (0.0 ≤ x ≤ 0.20) perovskite manganites synthesized by the reverse micelle (RM) technique were explored in detail. The phase purity, crystal structure, and crystallite size of the samples were determined using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. All the samples had rhombohedral crystal structure and crystallite size increased with increase in Fe content in La0.7Sr0.3MnO3. The scanning electron micrographs (SEMs) exhibited smooth surface morphology and nonuniform shape of the particles. The optical properties studied using UV-visible absorption spectroscopy revealed a decrease in the absorbance and optical band gap with an increase in Fe content in La0.7Sr0.3MnO3 compound. The temperature-dependent resistivity measurements revealed semiconducting nature of x = 0 and 0.1 samples up to the studied temperature range, while a metal-to-insulator transition was observed at higher Fe doping. Magnetic studies revealed weak ferromagnetism in all the samples and a reduction in the maximum magnetization with an increase in Fe content. A close correlation between electrical transport and magnetic properties was observed with the doping of Fe ion in La0.7Sr0.3MnO3 at Mn site. These results advocate strong interactions associated with the double exchange mechanism among Fe3+ and Mn3+ ions.  相似文献   

10.
Two new compounds A3AgSn3Se8(A = K, Rb) were synthesized solvothermally and characterized by X-ray single crystal diffraction. These compound are composed of building block [Sn3Se8]4− formed by three edge-sharing SnSe4 tetrahedra, and these building blocks are further connected by tetrahedral coordinated Ag+ to form infinite chains, alkali cations are located between the chains. Their optical properties were also studied.  相似文献   

11.
《Ceramics International》2022,48(15):21781-21786
Rare earth ions have been widely investigated as active dopants in various materials because of their distinct optical, electronic and magnetic properties. Halide perovskite resistive memories have attracted increasingly recent interest for tremendous potential applications in computation and data storage techniques. However, it remains unexplored to implement rare earth doping strategy for tuning perovskite resistive memories. Here, we report read-only memories based on environment-friendly and air-stable lead-free double perovskite Cs2AgBiBr6 films, which is particularly tuned by rare earth La3+ doping. We use the vacuum sublimation and solution processing method to obtain Cs2AgBiBr6 crystals doped by different content La3+, and fabricate resistive memory devices based on doped Cs2AgBiBr6 films. The simplest sandwich-like structure composed of ITO/La-doped-Cs2AgBiBr6/Ag only is designed in cross-bar array architecture with high-integration and simple operation. The resistive memory device of La-doped Cs2AgBiBr6 films demonstrate a typical write-once-read-many-times (WORM) behavior with low onset voltage of 1 V and long retention time of 12000 s. In particular, the ON/OFF ratio of the La-doped Cs2AgBiBr6 film is 100 times higher than that of the undoped Cs2AgBiBr6 film. This study provides a new insight to design and manipulate memory devices based on lead-free halide perovskite materials through doping effect of rare earth ions.  相似文献   

12.
《Ceramics International》2023,49(4):6307-6313
A mixed perovskite titanate-aluminate [(1-x)(Sr0.6La0.2Ce0.2Ti0.8Mg0.2O3)-xNdAlO3 for x = 0.1 to 0.4] solid solution was successfully synthesized. X-ray diffraction patterns (XRD) and Rietveld refinement results indicated a stable perovskite phase with a cubic structure, in which Nd3+ occupies the A-site randomly while Al3+ occupies the B-site. No additional reflection spots (superlattice reflections) were detected in the HRTEM pattern (see SAED), confirming the cubic symmetry. All samples showed small Urbach tails, mainly due to compositional disorder. Microstructural analysis based on atomic force microscopy (AFM) showed no traces of impurity phases. For x = 0.4, excellent microwave dielectric properties (MWD) are obtained with a quality factor (Q × f) of 37,131 GHz at f = 5.2801 GHz, relative permittivity (εr) of 43, and temperature coefficient of resonant frequency (τf) of +1.3 ppm/°C. Variations in εr, Q × f values, and τf may be related to changes in relative density (ρrel), ion polarizability, optical band gap, and tolerance factor, respectively.  相似文献   

13.
《Ceramics International》2016,42(15):17128-17136
Nanoparticles of basic composition Sn0.94Zn0.05Co0.01O2, Sn0.92Zn0.05Co0.03O2 and Sn0.90Zn0.05Co0.05O2 were synthesized by chemical precipitation method. The incorporation of Co and Zn in SnO2 lattice introduced significant changes in the physical properties of all the three nanocrystals. The average particle size estimated from TEM data decreased from 15.71 to 6.41  nm with enhancement in concentration of oxygen vacancies as Co content is increased from 1 to 5 wt%. Increasing Co content enhanced the Sn:O atomic ratio as a result concentration of oxygen vacancies increased. The dielectric study revealed strong doping dependence. The dielectric parameters (ε′, tanδ and σac) increased with increasing Co content and attained maximum values for 5% (Zn, Co) co-doped SnO2 nanoparticles. The dielectric loss (ε′′) exhibited dispersion behavior and the Debye’s relaxation peaks observed in dielectric loss factor (tanδ), whose intensities increased with increasing Co content. The variation of dielectric properties and ac conductivity revealed that the dispersion is due to Maxwell-Wagner interfacial polarization and hopping of charge carriers between Sn+2/Sn+3 and Co+2/Co+3. The large dielectric constant of all samples made them interesting materials for device application. Magnetization measurements (M (H) loops) revealed enhancement in saturation magnetization with doping which is due to the formation of large amount of induced defects and oxygen vacancies in the samples. The present study clearly reveals doping dependent properties and the oxygen vacancies induced ferromagnetism in Zn, Co co-doped SnO2 nanoparticles having applications in ultra-high dielectric materials, high frequency devices and spintronics.  相似文献   

14.
《Ceramics International》2016,42(16):18037-18044
Lead-free Cu2+-modified (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCZT−xCu2+) piezoelectric ceramics was synthesized by sol-gel method. The effects of Cu2+ additions on sintering characteristics, the phase structure, microstructure, electrical properties and complex impedance characteristic were investigated systematically. The XRD patterns exhibited a pure perovskite structure without impurity phase in all samples. SEM micrographs, temperature dependence of dielectric constant and polarization-electric field (P-E) hysteresis loops indicated that a small amount of Cu2+ addition affected the properties obviously. The results revealed that the addition of Cu2+ significantly improved the sinterability of BCZT ceramics which resulted in a reduction of sintering temperature from 1440 °C to 1230 °C. The TG-DSC was analyzed to verify the reaction process of BCZT−Cu2+ materials. (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ceramics with x=0.020 Cu2+ exhibited good electrical properties: εm=12,112, Tc=360 K, εr=2614, tan δ=0.026, Kp=0.47 and d33=382 pC/N. The results indicated that Cu2+-modified BCZT ceramics could be a promising candidate for commercial purposes.  相似文献   

15.
《Ceramics International》2020,46(6):7430-7437
A series of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 (Me=Y3+,Nb5+,Ta5+,V5+,Mo6+,W6+) perovskite oxides were synthesized by using a solid state reaction method. Three multiple-cation solid solutions formed pure phase compounds, and only two compounds were sintered into ceramics. Microstructure analysis showed the influence of configurational entropy on phase stability and grain growth. Dielectric measurements showed that the high entropy ceramics possessed decent temperature stability of permittivity from 25 °C to 200 °C, low dielectric loss (<0.002) from 20 Hz to 2 MHz, high resistance and moderate breakdown strength (290 kV/cm, 370 kV/cm). Evidence strongly confirmed that controlling configurational entropy could be a feasible perspective to set up highly tunable perovskite structures and explore novel species of dielectric materials.  相似文献   

16.
Here, a new promising perovskite structure of KMnF3 has been fabricated and characterized, which yields bandgap of 1.6?eV with fascinating moisture-resistance and phase stability. Investigation of structural, optical, stability and transport properties have done by XRD, SEM, UV–vis–NIR spectroscopy, photoluminescence and electrical conductivity test. Such examination indicated the high carrier mobility (18?cm2/V?s) and density (1014/cm3) even after a long interval between each excitation. These transport properties are comparable to that of the organic perovskite, indicating the importance of KMnF3 for solar device applications.  相似文献   

17.
The ABO3 type perovskite oxide-based ceramic membranes are one of the most important classes of materials for high-temperature solid oxide fuel cell applications. The acceptor-doped calcium titanate (CaTiO3) perovskite has attracted considerable attention as an oxide ion-conducting membrane due to its potentially high ionic conductivity and excellent stability. Nonetheless, the ionic conductivity of the material must still be improved. Following the strategy of the substitution of dopants on the B-site, the current work is focused on exploring the effect of Al and Ni additions on electrical properties, by studying the nominal compositions CaTi0.7Al0.3–xNixO3−δ (x = 0, 0.1, 0.2 and 0.3). The materials were synthesized by the sol–gel method and studied as a function of phase composition, microstructure, and electrical properties. The results demonstrate an increase of both total and specific grain boundary conductivity with increasing Ni content, while predominant p-type behavior is shown under oxygen-rich atmosphere.  相似文献   

18.
《Ceramics International》2015,41(7):8578-8583
Gd1−xBixFe1−yZryO3 nanoparticles were synthesized via micro-emulsion route with different molar concentrations of Bi+3 (x) and Zr+4 (y). The values of x and y were kept in the range 0.00, 0.15, 0.30, 0.45 and 0.60. The characterizations were done by the thermo-gravimetric analysis (TGA), X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The average particle size was ~50 nm. The effect of Bi3+ and Zr4+ contents on electrical, dielectric and magnetic parameters were studied. The DC resistivity measurements showed at certain Bi3+ and Zr4+ contents, more than two fold increase in electrical resistivity from 68×108 Ω cm to 150×108 Ω cm. The magnetic measurements showed the paramagnetic nature of Gd1−xBixFe1−yZryO3 nanoparticles. The electrical and magnetic properties of these nanoparticles suggested that these materials are potential candidates for the fabrication of telecommunication and switching devices.  相似文献   

19.
A series of novel cationic gemini surfactants with rigid amido groups inserted as the spacers, named C 12 ‐PPDA‐C 12 , C 14 ‐PPDA‐C 14 and C 16 ‐PPDA‐C 16 , were synthesized by a two‐step reaction with dimethyl terephthalate, N,N‐dimethyl propylene diamine and alkyl bromide as raw materials. The chemical structures of the prepared compounds were confirmed by IR, 1H and 13C NMR and element analysis. Surface activity properties of the synthesized compounds were investigated by surface tension, electrical conductivity and fluorescence. Increasing the number of carbon atoms in the hydrophobic alkyl chain, decreased the critical micelle concentration (CMC), surface tension at the CMC and the minimum surface area. Other relevant properties including foaming ability and emulsion stability were investigated. The results indicated that the synthesized gemini surfactants possess good surface properties, emulsifying properties and steady foam properties.  相似文献   

20.
《Ceramics International》2017,43(15):11920-11928
Lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT) ceramics with excellent electrical properties were successfully synthesized by a molten salt method (MSS). The submicron BCZT powders with pure perovskite phase were obtained by adjusting the KCl-NaCl content that was used as the eutectic salt. The effects of salt content and reaction temperature on the structure and properties of the BCZT materials were systematically investigated. Comparing with BCZT ceramics prepared by solid state method (SS), the reaction temperature of BCZT ceramics synthesized by MSS decreased approximately 200 °C. Moreover, BCZT ceramics sintered at 1360 °C with 50% eutectic salt showed the most outstanding electrical properties, which are as follows: d33 = 604 pC/N, kp = 57%, Ps = 17.11 µC/cm2, Pr = 9.98 µC/cm2, εm = 15872, εr = 2654 and tan δ = 0.013. In addition, this work revealed a possible reaction course processes and mechanism about MSS. The results provide a new design to optimize the performance of BCZT lead-free piezoelectric ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号