首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《Ceramics International》2022,48(15):21622-21630
In this work, GdMnO3 ceramics were synthesized by solid state reaction and sol-gel methods, and the structure, defects and optical, dielectric and magnetic properties of the synthesized samples were comparatively investigated. The samples synthesized by different methods show a single phase structure without any detectable impurities. The SEM results suggest that the particle size of the specimen obtained by the solid phase route is on the micron scale, while that of the specimen fabricated by the sol-gel route is on the nanometer scale. Compared with the ceramic fabricated by solid-state reaction technology, the specimen synthesized by sol-gel technique possesses lower oxygen vacancies and Mn2+ concentration, and Mn3+ concentration. The positron annihilation analyses show that the cation vacancy concentration of the specimen synthesized by the solid phase approach is higher than that of the specimen synthesized via the sol-gel approach. The compound obtained by the solid phase reaction has better dielectric properties than that obtained with the sol-gel method. The magnetic transition temperature and the effective magnetic moment are influenced by the Mn ion valence state in GdMnO3. The stronger magnetization of the ceramic synthesized via the sol-gel approach is associated with the lower concentration of cation vacancies.  相似文献   

2.
《Ceramics International》2022,48(1):578-586
The controlled and stable crystal structure, reduction in Curie temperature and semiconducting nature of oxide materials are the key factors for magnetoelectrical applications. Therefore, Co0.6Mn0.4GdxFe2-xO4 where x = 0, 0.033, 0.066 and 0.10 were synthesized to analyse the structural, morphological, magnetic, and electrical properties using a sol-gel autocombustion approach. The X-ray diffraction pattern reveals that the cubic crystallite size decreases with increasing smaller content of Gd3+ oxides without any secondary phase. Field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) study explain the complete morphology, agglomeration and dense structure of rare earth-doped Gd oxide in the mixed Co–Mn spinel ferrite nanoparticles. Fourier transform infrared spectra confirms the formation of a spinel structure with absorption bands below 1000 cm?1. The magnetic analysis shows that the saturation magnetization (59.20 emu/g - 49.71 emu/g) and coercivity (985.21 Oe – 254.11 Oe) of the synthesized samples decreased with increasing content of Gd3+ ions. The increase in DC conductivity with increasing temperature verifies the semiconducting nature of the synthesized samples, and a higher DC conductivity of the Co0.6Mn0.4Gd0.10Fe1.90O4(CMGF3) samples was observed at approximately 0.0362 S/cm at 973 K temperature.  相似文献   

3.
Ca0.9Gd0.1MnO3 nanopowders with perovskite type crystal structure were synthesized by modified glycine nitrate procedure. Nanopowders were prepared by combining glycine with metal nitrates and/or metal acetates in their appropriate stoichiometric ratios. Modification of the procedure was performed by partial replacement of nitrates by acetates, in order to control the burn-up reaction. Obtained Ca0.9Gd0.1MnO3 powders were calcinated in the temperature interval from 850 °C to 950 °C for 10 min. Properties such as phase evolution, lattice parameters, chemical composition and magnetic properties were monitored by DTA, X-ray diffraction, SEM/EDS and magnetic measurements. Magnetic measurements performed at the sample with the smallest crystallite size showed that a 10% of Gd3+ substituted Ca2+ ions changes antiferromagnetic properties of CaMnO3 by the introduction of ferromagnetic interaction due to a double exchange between Mn3+ and Mn4+ ions. Presence of competing interactions and their randomness lead to a formation of a spin glass state below Neel temperature TN = 110 K. From the high temperature magnetic susceptibility measurements effective magnetic moment of manganese ions is determined which lies between the values for Mn3+ and Mn4+ ions.  相似文献   

4.
Lanthanum-doped bismuth titanate (Bi3.25La0.75Ti3O12 or BLT) is important ferroelectric materials for FeRAMS, which need further improved by substituting isovalent cations to assist the elimination of defects such as oxygen vacancy. In this work, fabrication and investigation of substituting Mn4+ for Ti4+ ion on B-site of Bi3.25La0.75Ti3O12 ceramics were carried out. X-ray diffraction patterns of BLTMn ceramics indicated orthorhombic structure with lattice distortion, especially for samples with higher concentration of MnO2 dopant. Microstructural investigation showed that all ceramics composed mainly of plate-like grains. An increase in MnO2 doping content increased diameter and thickness of grains but reduced density of the ceramics. Electrical conductivity was found to decrease while dielectric constant increased with Mn4+ doping concentration.  相似文献   

5.
Mn-doped BiFeO3 (BiFe1–xMnxO3, x = 0, 0.03, 0.05, 0.10, 0.15 and 0.20) polycrystalline multiferroic thin films were successfully synthesized using the facile sol-gel spin-coating method. The crystal structures, surface features, elements valences, and magnetic properties of as-prepared samples were systematically explored. X-ray diffraction and Raman spectroscopy studies revealed the substitutions of Mn into the Fe site and a rhombohedral-to-orthorhombic phase transition. The Field Emission Scanning Electron Microscopy showed a decrease in the average particle sizes and an improvement of surface morphology with increasing the concentration of the substitutes. Energy-dispersive X-ray spectroscopy confirmed the doping concentration of Mn2+ in the samples. X-ray photoelectron spectroscopy indicated the co-existence of Mn2+/Mn3+ ions in the doped films. The remnant magnetization value of BiFe0.90Mn0.10O3 thin film was found to be approximately six times than that of pure BiFeO3 thin film under a magnetic field of 10 kOe. The enhanced magnetic property of BiFe0.90Mn0.10O3 thin film was mainly ascribed to the structural distortion of spin cycloid and the enhancement of super-exchange interaction between the Fe3+ (Mn2+) and O2- ions.  相似文献   

6.
《Ceramics International》2022,48(3):3685-3694
In this paper, the effects of hot isostatic pressing (HIP) temperature on the crystal structure, optical, dielectric and magnetic properties of GdMnO3 ceramics were studied. All samples form a single-phase structure without structural transformation, while HIP temperature induces the changes in lattice parameters. HIP causes the change in Mn ions valence state, oxygen vacancy concentration, Raman vibration modes and microscopic morphology of GdMnO3. Vacancy concentration of the samples prepared by HIP at 800 °C increases compared with that of the samples without HIP, then remains unchanged when the HIP temperature is from 800 to 900 °C, and finally decreases with the further increase of HIP temperature. Appropriate HIP temperature can increase the dielectric constant and decrease the dielectric loss. The transition temperature of paramagnetism to antiferromagnetism and magnetization can be significantly affected by HIP temperature. Magnetic transition temperature and magnetization are closely related to Mn2+ ions concentration and cation vacancy concentration, respectively.  相似文献   

7.
In this paper, the crystal structure, vacancy defect, local electron density and magnetic properties of Gd1-xCaxCrO3 (0 ≤ x ≤ 0.3) polycrystalline samples were investigated systematically. The crystal structural analyses show that all the samples are orthorhombic phase and a structural distortion happens around x = 0.3. Due to the formation of Cr4+ ions, both the lattice constant and the Cr–O bond length decrease. The results of positron annihilation spectrum reveals that the vacancy defect concentration increases and the local electron structure changes with the introduction of Ca2+ ions. The field-cooled (FC) and zero-field cooled (ZFC) curves of Gd1-xCaxCrO3 samples measured under H = 100 Oe exhibits negative magnetization characteristics due to the interaction between Gd3+ and Cr3+ ions, and the magnetism can be affected by the structural distortion.  相似文献   

8.
《Ceramics International》2015,41(4):5734-5748
Polycrystalline samples of α-AgY1−xGdx(WO4)2 with x=0, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, and 1 have been prepared by a solid state reaction method and the influence of Gd3+ substitution for Y3+ on microstructure, thermal and magnetic properties was investigated. The X-ray diffraction analysis showed the phases to crystallize in the monoclinic symmetry, space group C2/m. A reversible monoclinic to tetragonal phase transition occurs in AgY1−xGdx(WO4)2 and strongly depends on Gd3+ ion concentration. Electron paramagnetic resonance (EPR) spectra of Gd3+ ions showed non-monotonous dependence of interaction strength on gadolinium concentration. Magnetic measurements showed paramagnetic behavior and strong increase of magnetic moment as the yttrium content decreases.  相似文献   

9.
Polycrystalline Ag-doped [La0.625(Ca0.315Sr0.06)MnO3]1-x:Agx (LCSMO) ceramics with (x = 0, 0.03, 0.05, 0.10, 0.15, and 0.20) were prepared by sol-gel method, and their structures and properties were characterized. X-ray diffraction results indicated that all bulk samples had single phase with orthorhombic phase (space group of Pbnm) without impurities. With the increase of Ag doping content, the resistivity of the samples decreased, while the remanent magnetization and coercive field increased. The metal to insulator transition temperature (Tp), temperature coefficient of resistance (TCR) and Curie temperature (Tc) for x = 0.20 were determined as 300 K, 9.38% (292.6 K) and 291.86 K respectively. The highest MR value of 28.36% (295.03 K) was obtained at x = 0.15. XPS data revealed that substitution between A-site ions and Ag+ could increase the ratio of Mn4+ ion. Double exchange effect (DE) enhanced by changing Mn–O bond distance, Mn–O–Mn bond angle, and increasing Mn4+ ion concentration. These features promoted the transfer of itinerant electron between Mn3+ and Mn4+ ions. However, the magnetization obtained at x = 0.20 was less than that at x = 0, as diamagnetic Ag released magnetism of the samples. The results suggested that the LCSMO polycrystalline ceramics could be used as a candidate to prepare room temperature infrared detectors, magnetic sensors or magneto-electric devices, and so on.  相似文献   

10.
The influence of Er3+–Mn2+ substitution on the properties of Y-type hexaferrites (chemical composition: Ba2–xErxZn0.6Co0.6Cu0.8Fe12?yMnyO22 (x = 0.0, 0.3, and 0.5 and y = 0.0, 0.4, and 0.6)), which were synthesized by the sol-gel autocombustion method, was investigated. The X-ray diffraction spectra were analyzed by the Rietveld refinement method, and hexaferrite was observed to possess a single-phase crystalline structure, whereas the Fourier-transform infrared spectra clarified the formation of the iron oxide base material. The morphology of the grains revealed that they were hexagonal and without agglomeration. The band gap of the samples decreased as the Er3+–Mn2+ concentration increased. Dielectric and impedance spectroscopies of the prepared samples indicated the role of polarization in the variation in the dielectric and impedance parameters. Particularly, the occurrence of space-charge polarization increased the dielectric constant at lower frequencies. Further, the Cole–Cole plot revealed a semicircle in the lower frequency region, thereby indicating that the grain boundary contributed the most to the dielectric constants. Modulus spectroscopy revealed that the charge mobility increased as the concentration of Er3+–Mn2+ increased. Additionally, the magnetic analysis indicated that Mn2+ preferably replaces Fe3+ at the octahedral site, thereby reducing the magnetization of the prepared samples through a reduced superexchange interaction. Furthermore, increasing the coercivity values thermally stabilized the sample, and this is vital for perpendicular magnetic recording.  相似文献   

11.
To investigate the evolution of the structural and enhanced magnetic properties of GdMnO3 systems induced by the substitution of Mn with Cr, polycrystalline GdMn1-xCrxO3 samples were synthesized via solid-state reactions. XRD characterization shows that all GdMn1-xCrxO3 compounds with single-phase structures crystallize well and that Cr3+ ions entering the lattice sites of GdMnO3 induce structural distortion. SEM results indicate that the grain size of the synthesized samples (a few microns) decreases as the Cr substitution concentration increases. Positron annihilation lifetime spectroscopy reveals that vacancy-type defects occur in GdMn1-xCrxO3 ceramics and that the vacancy size and concentration clearly change with the Cr content. The temperature and field dependence of the magnetization curves show that Cr substitution significantly influences the magnetic ordering of the gadolinium sublattice, improving the weak ferromagnetic transition temperature and magnetization of GdMn1-xCrxO3. The enhanced magnetization of GdMn1-xCrxO3 is closely related to the vacancy defect concentration.  相似文献   

12.
《Ceramics International》2016,42(3):4176-4184
The effect of the La3+ and Gd3+ co-doping on the structure, electric and magnetic properties of BiFeO3 (BFO) ceramics are investigated. For the compositions (x=0 and 0≤y≤0.15) in the perovskite structured LaxGdyBi1−(x+y)FeO3 system, a tiny residual phase of Bi2Fe4O9 is noticed. Such a secondary phase is suppressed with the incorporation of ‘La’ content (x). The magnitude of dielectric constant (εr) increases progressively by increasing the ‘La’ content from x=0 to 0.15 with a remarkable decrease of dielectric loss. For x=0.15, the system LaxGdyBi1−(x+y)FeO3 exhibits highest remanent magnetization (Mr) of 0.18 emu/g and coercive magnetic field (HC) of ~1 T in the presence of external magnetic field of 9 T at 300 K. The origin of enhanced dielectric and magnetic properties of LaxGdyBi1−(x+y)FeO3 and the role of doping elements, La3+, Gd3+ has been discussed.  相似文献   

13.
《Ceramics International》2020,46(9):13695-13703
Manganese–copper ferrite (MCFO) and dysprosium (Dy)-doped manganese–copper ferrite nanocomposites (Mn0.5Cu0.5DyxFe2−xO4) (x = 0, 0.05, 0.10, and 0.15) were synthesized by sonochemical method. Crystal structure and the structural parameters of the MCFO were analyzed based on the doping concentration of Dy ion. It was observed that the average crystalline size of the synthesized nanocomposite decreases when the concentration of Dy increases. The existing spherical surface morphology of the MCFO and Dy-doped MCFO nanocomposites were obtained through scanning electron microscopy. In the UV spectrum, the pristine MCFO sample showed an absorbance peak at 743 nm whereas the absorbance values of Dy-doped ferrite nanocomposite considerably shifted (blue) toward a lower wavelength (231–222 nm). The dielectric parameters of all ferrite nanocomposites were studied in the frequency range of 100 Hz to 5 MHz. The dielectric spectrum revealed that dielectric constant and loss tangent decreased with increased doping concentration of Dy ion. The saturation magnetization also changed with Dy doping in MCFO. The impact of Dy on manganese–copper ferrite changed the optical, dielectric and magnetic properties of the prepared binary ferrite nanocomposite, which can be used for microwave-absorbing material applications.  相似文献   

14.
《Ceramics International》2023,49(7):10774-10786
Sr-doped (0<x < 0.2) ceramic samples of the lanthanum manganite oxides were obtained via sol-gel method to investigate the influence of doping on structural, magnetic end electronic responses, and their correlations. Synthesized samples of non-stoichiometric compositions are rhombohedral single-phase. After annealing the formation of a phase-separated system as a mixture of orthorhombic phases was found. The R-3c and PnmaI, PnmaII* and PnmaII phases have been studied using Mössbauer spectroscopy, XRD, SEM analysis and magnetic measurements. The magnetic temperature-concentration phase diagram of La1–xSrxMnO3+δ (x = 0.05, 0.10, 0.20) was obtained.The Jahn-Teller effect or the orbital order breaking, as well as the competition between Mn3+–O2—Mn4+ double- and Mn3+–O2-–Mn3+ superexchange interaction was demonstrated under the effect of cation doping compound and interstitial oxygen value (δ). The relaxation character of the Mössbauer spectra and the type of magnetization dependences revealed nanosized magnetic clusters with fluctuation of their magnetic moment in all perovskite phases. Results are interpreted in terms of matrix – clusters: regions of sample with ferromagnetic type of ordering (cluster) exist in antiferromagnetically or ferromagnetically (with different exchange parameter) ordered matrix. Exchange interaction frustrations of the cluster with the matrix can lead to relaxation behavior of the magnetic moment of the cluster. The clusters size vary from about 3.9 to 5.7 nm. All samples are characterized by the presence of particles agglometates with a typical size about 0.4–0.8 μm; for annealed samples additional non-conducting regions with 80–220 nm in size were found. It is shown that the annealing time significantly affects the production of materials with determined properties and be useful in the applied field in technological processes.  相似文献   

15.
The work presents a comparative study of the effects of divalent Ba, Sr, and Pb substituents on the multiferroic properties of BiFeO3. The multiferroic properties of Bi0.75A0.25FeO3 (A = Sr, Pb, Ba) solid solution have been explained taking into account the effects of size differences and electronic configuration differences between the host element (Bi) and the substituent. X‐ray diffraction studies revealed that Sr and Pb substitution at Bi‐site transforms the rhombohedral phase (R3c) to cubic phase (Pm3m), whereas the Ba‐substituted sample exhibited the presence of both rhombohedral and cubic phases (R3c + Pm3m). Electronic structure studies through XPS revealed that charge imbalance induced by divalent substitution was being compensated by the formation of oxygen vacancies, while the Fe ions exist in Fe2+ and Fe3+ states. Replacement of volatile Bi by Sr, Pb, and Ba reduces the concentration of oxygen vacancies (VO2+) and helps to improve the dielectric properties. Strong magnetization enhancement was observed in the substituted compositions and was seen to be consistent with the suppression of cycloid spin structure due to structural transformation as well as possible changes in Fe–O local environment leading to local lattice distortion effects. Furthermore, the observed decrease in the values of magnetic coercivity at low temperature in all the substituted samples is explained in terms of reduced effective single ion anisotropy, originating in the magnetoelectric coupling and being a particularly stronger effect in the case of the lone pair dopant Pb, consistent with theoretical predictions. The lone pair substituent Pb leads to the largest dielectric constant, enhanced magnetization, and large effects on the low‐temperature hysteresis.  相似文献   

16.
《Ceramics International》2021,47(23):33152-33161
The Mn4+-doped Ca2MgTeO6 (CMTO) far-red emitting phosphors with double perovskite-type structure were successfully synthesized. Upon near-ultraviolet (n-UV, 300 nm) light excitation, the as-prepared phosphors showed far-red light at 700 nm attributed to the 2Eg4A2g transition of Mn4+ ion. The doping concentration of the CMTO:xMn4+ samples was optimized to be 0.8 mol%. The relevant mechanism of concentration quenching was demonstrated as the dipole-dipole interaction. Furthermore, solid solution and impurity doping strategies were adopted to improve the far-red emission of the luminescence-ignorable CMTO:Mn4+ phosphor. Series of Ca2MgTe(1−y)WyO6:0.8 mol%Mn4+ (y = 0–100 mol%) solid solution and Ca2−zLnzMgTe0.6W0.4O6:Mn4+ (Ln = La, Y, and Gd, z = 10 mol%) phosphors were synthesized through the above two strategies. The luminescence intensity of the optimal Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphor was 13.7 times that of the CMTO:Mn4+ phosphor and 2.51 times that of red commercial phosphor K2SiF6:Mn4+. Notably, both CMTO:Mn4+ and Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphors exhibited remarkable thermal stability compared with most Mn4+-doped phosphors. Finally, the highly efficient Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphor was successfully applied in fabricating the warm white light diode (w-LED). This working along both lines strategy exhibited great potential for luminescence optimization of Mn4+-doped oxide phosphors.  相似文献   

17.
《Ceramics International》2019,45(15):18632-18639
We show that the replacement of Mn with Al strongly affects the magnetization and electrical transport behaviors in La0.5Ca0.5Mn1-xAlxO3-δ (x = 0, 0.05, 0.07 and 0.09). Nonmagnetic Al3+ ions substitution at Mn sites dilutes Mn3+-O2--Mn4+ network, thus suppresses the ferromagnetic metallic state in La0.5Ca0.5MnO3-δ and causes a phase separation phenomenon, in which ferromagnetic phase coexists with antiferromagnetic charge ordered phase at low temperatures. With applying sufficiently high magnetic field, step-like metamagnetic transitions were observed in x = 0.05–0.09 systems below helium temperature, in which the antiferromagnetic charge ordered phase collapsed into ferromagnetic phase. Corresponding to the sharp step-like metamagnetic transitions, the resistivity decreases dramatically with increasing magnetic field, exhibiting a percolative insulator-metal transition. The variation of temperature and magnetic field changes the relative fractions of ferromagnetic and charge ordering phases, and percolative insulator-metal transition occurs due to the development of percolation paths between the growing FM domains.  相似文献   

18.
In this paper we present the structural, magnetic and dielectric properties of ceramic nickel manganite NiMn2O4+δ produced by using nickel permanganate Ni(MnO4)2xH2O as a precursor. We have characterized the NiMn2O4+δ stoichiometry using quantitative energy-dispersive analysis of X-rays and thermal gravimetry under reducing conditions. Increased oxygen and Mn4+ contents were detected. X-ray diffraction and Rietveld refinement of X-ray data were carried out. Temperature dependent magnetization measurements were performed and the ferri-magnetic transition was identified at ≈100 K. The ferri-magnetic moment was found to be ≈1μB and hysteretic magnetization vs applied field curves were obtained. Dielectric properties were measured using impedance spectroscopy. Two dielectric relaxation processes were detected, which were associated with grain boundary and bulk contributions. The Arrhenius plots of resistivity and the temperature dependent dielectric permittivity were obtained for the two relaxations by means of an equivalent circuit model based on a series of two parallel RC elements.  相似文献   

19.
《Ceramics International》2017,43(5):4042-4047
In this study we report on the successful synthesis of GdxFe3−xO4 nanoparticles with nominal Gd-content (x) in the range 0.00≤x≤0.50. The effect of the nominal Gd-content on morphological, structural and magnetic properties was investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and Mössbauer spectroscopy. We found the actual inclusion of Gd3+ ions into cubic ferrite structure lower than the nominal values, though no extra phase was observed in the whole range of our investigation. Moreover, from Mössbauer data we found evidences of Gd3+ ions replacing both Fe3+ and Fe2+ ions, the latter leading to iron vacancies in the cubic ferrite crystal structure. As the nominal Gd-content, the lattice parameter and the average crystallite size increases monotonically. We found that in the same range of nominal Gd-content the lattice parameter decreases with the increase of iron vacancy content.  相似文献   

20.
Red-emitting color-convertors have attracted considerable attention for promising applications in solid-state lighting (SSL) to improve color rendition. However, the current nitride and fluoride phosphor powders have encountered several challenges, such as high cost, narrow emission bands, and insufficient stability during operation, which limit the development of high-power full-spectrum SSL. In this study, thermally robust Gd3(Al,Ga)5O12:Mn (GAGG:Mn) solid-solution ceramics (SSCs) with dual wavelength red-emission bands were prepared via an oxygen solid-state sintering reaction. The doped Mn ions occupied octahedral Al3+ and Ga3+ sites to generate Mn4+ luminescent centers with pronounced deep-red emissions peaking at 698 nm (2E → 4A2), and Mn2+ luminescent centers with broad red emissions at 628 nm (4T1 → 6A1). Because the cationic radius matching effect induced the regulation of valence state of Mn, the photoluminescence of the GAGG:Mn SSCs can be tailored by the substitution of Al3+ with Ga3+. Moreover, the Mn3+ also existed in the GAGG lattice host, and their concentration decreased with increasing Ga3+ contents owing to the mismatch of ionic radius between Mn3+ and Ga3+ ions. With the optimization of Al/Ga ratio and concentration of Mn ions, a broad emission band ranging from 550 to 800 nm (bandwidth = 250 nm) was achieved from Gd3Al3Ga2O12:0.3%Mn SSCs upon 465-nm excitation. Moreover, the GAGG:Mn SSC has over 17-fold enhanced thermal conductivity compared with the corresponding phosphor powder. This paper opens a door of regulating the valence state of luminescence centers with cation substitution and the application of oxide red-emitting color-convertors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号