首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spherical granules of aluminum nitride (AlN) with an average particle size of about 50 μm were produced from aqueous suspensions using an AlN powder surface treated against hydrolysis with aluminum dihydrogenphosphate [Al(H2PO4)3]. Two different amounts of Al(H2PO4)3 were tested and the effects of surface treatment and aging time were evaluated by various techniques (XRD, TG‐DTA, zeta potential and pH measurements). The treated powder exhibited antihydrolytic property and good dispersing behavior, enabling the preparation of low‐viscosity and high‐concentration aqueous AlN slurries for freeze granulation. The spherical AlN granules were sintered in a boron nitride (BN) powder bed followed by ultrasonic washing of the AlN granulates/BN mixture to remove BN. The sintered spherical AlN granules present excellent crystallinity and high sphericity as observed from SEM micrographs.  相似文献   

2.
Boron nitride (BN) thin coating has been formed on the surface of chemically activated polyacrylonitrile (PAN) carbon fiber by dip coating method. Dip coating was carried out in saturated boric acid solution followed by nitridation at a temperature of 1200 °C in nitrogen at atmospheric pressure to produce BN coating. Chemical activation improved surface area of PAN fiber which favours in situ carbothermal reduction of boric acid. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) have shown the formation of boron nitride. The X-ray photoelectron spectroscopy reveals that the coating forms a composite layer of carbon, BN/BOxNy and some graphite like BCN with local structure of B–N–C and B(N–C)3. The oxidation resistance of the coated fiber was significantly higher than uncoated carbon fiber. Tensile strength measurement reveals that the BN coated fiber maintained 90% of its original strength. As compared to chemical vapor deposition (CVD), this process is simple, non-hazardous and is expected to be cost effective.  相似文献   

3.
Cubic boron nitride (cBN) compacts, using 15 wt.% Al and 20 wt.% AlN respectively as additives, were sintered in the temperature range of 1300–1700 °C for 20 min under high pressure of 5.0 GPa. The hardness, microstructure, phase composition and cutting performance of the high pressure sintered samples were investigated. A liquid phase sintering and reaction process was observed in the cBN–Al system, which leads to the formation of AlN and AlB2 as confirmed by X-ray diffraction (XRD) in the sintered compacts. Scanning electron microscopy (SEM) analysis shows that the samples have a homogeneous microstructure. The hardness decreases with increase of sintering temperature and reaches the highest Vickers hardness of 32.1 GPa at 1350 °C. While in the cBN–AlN system, AlN grains agglomerate heavily at temperature below ~ 1500 °C. As the sintering temperature increasing, Al2O3 appeared and the AlN agglomeration disappeared gradually. A highest cBN–AlN composite hardness of 29 GPa was achieved when sintered at 1600 °C. Turning tests showed that cBN compacts with 15 wt.% Al as the additive has a longer tool life as compared to that with 20 wt.% AlN. Our results indicated that cBN–Al system is more favourable to obtain well-sintered cBN compacts comparing with the cBN–AlN system.  相似文献   

4.
Polymeric carbon nitride, which was synthesized by polymerization of dicyandiamide at 500°C, was used as a nitridation reagent in the conversion of δ‐alumina (δ‐Al2O3) to aluminum nitride (AlN). The products obtained at various reaction temperatures were characterized by powder X‐ray diffraction, 27Al magic‐angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, Raman spectroscopy, and X‐ray photoelectron spectroscopy (XPS). δ‐Al2O3 began to convert to AlN at 900°C, which is the lowest temperature reported for the formation of AlN from Al2O3, and completely converted to AlN at 1400°C. The occurrence of reaction intermediates during nitridation was confirmed by 27Al MAS NMR and XPS. The change in Raman spectra with reaction temperatures indicated that lattice defects in AlN were reduced by calcining at higher reaction temperatures.  相似文献   

5.
《Ceramics International》2022,48(12):16619-16629
For the miniaturization of high-power electronic components, AlN/Al is a promising metallized ceramic substrate due to its superior mechanical and thermal performances. Numerous bonding processes have been proposed for fabricating the metallized ceramic substrate. Unfortunately, the influences of various bonding techniques on the mechanical performance of AlN/Al metallized ceramic substrate remain undetermined to date. The objective of this study was thus to investigate the effects of the transient liquid phase (TLP) technique and pre-oxidation treatment on the bonding, microstructure, and mechanical strength of the AlN/Al metallized ceramic substrate.The results indicated that the three-layered AlN/Al/AlN specimen could be effectively bonded by the TLP process and pre-oxidation treatment. However, the bending strengths of the specimens fabricated by the two techniques were obviously divergent. The bending strength of raw AlN substrate was 333 MPa. In contrast, the bending strengths of the three-layered specimens with AlN substrates pre-oxidized at 1050 °C, 1150 °C, and 1250 °C were 292 MPa, 250 MPa, and 224 MPa, respectively. Raising the pre-oxidation temperature of the AlN substrate from 1050 °C to 1250 °C obviously increased the thickness of the Al2O3 layer and deteriorated the bending strength, for the fracture propagated along the Al2O3 layer and the Al2O3/AlN interface. For the TLP bonding, the Cu film deposited on the AlN substrate contributed to the generation of Al–Cu transient liquid and to bonding. The bending strength of the three-layered specimens fabricated by TLP at 650 °C was 417 MPa, which was 25% and 43% better than those of the raw AlN substrate and the three-layered specimens prepared by the pre-oxidation treatment, respectively.  相似文献   

6.
《Ceramics International》2016,42(13):14716-14720
We investigated the effect of adding nickel(II) sulfide (NiS) on nitridation of alumina (Al2O3) to aluminum nitride (AlN) using polymeric carbon nitride (PCN), which was synthesized by polymerization of dicyandiamide at 500 °C. The product powders obtained from nitridation of a mixture of δ-Al2O3 and NiS powders (mole ratio of 1:0.01) at various reaction temperatures were characterized by powder X-ray diffraction, 27Al magic-angle spinning nuclear magnetic resonance, and Raman spectroscopy. δ-Al2O3 began to convert to AlN at 900 °C and completely converted to AlN at 1300 °C. The as-synthesized sample powders contained nitrogen-doped carbon microtubes (N-doped CMTs) with a length of several tens of mm and thickness of ca. 3 µm. The addition of NiS to δ-Al2O3 resulted in the enhancement of the amount of N-doped CMTs and nitridation rate, which might be due to the catalytic action of Ni particles on the thermal decomposition of vaporized PCN. The change in Raman spectra with reaction temperatures indicated that the crystallinity of N-doped CMTs was increased by calcining at higher reaction temperatures.  相似文献   

7.
有机羧酸改性氮化铝粉体的抗水解性能   总被引:3,自引:0,他引:3       下载免费PDF全文
采用有机羧酸和PEG作为表面活性剂对工业AlN粉体进行表面改性处理,研究了改性前后AlN粉体的抗水解特性以及表面改性机制。研究结果表明,AlN表面与水分子发生化学反应,导致溶液的pH值迅速提高,表面包覆有机羧酸可有效地改善AlN粉体的抗水解性能;AlN粉体在水中浸泡48h后,氮含量基本保持不变,除了AlN晶相外,没有其他晶相出现,且改性粉体在高剪切应力的水基球磨介质中也保持较强的稳定性。  相似文献   

8.
Aiming to manufacture low‐cost silicon nitride components, a low‐cost β powder was chosen as a raw powder and low‐temperature sintering at 1550–1600°C under atmospheric pressure nitrogen was carried out. The silicon nitride from β powder with 5 wt% Y2O3 and 5 wt% MgAl2O4 additives and sintered at 1600°C for 8 h was successfully densified, and it exhibited moderate strength and toughness of 553 MPa ± 22 and 3.5 MPa m1/2, respectively. The results indicate that the low‐temperature sintering of the low‐cost β powder has a potential to reduce cost of components.  相似文献   

9.
The hydrolysis behavior of AlN powder suspensions (5–25 wt%) at 5°C has been investigated to explore the impact of low temperatures on the hydrolysis behavior. Throughout the 312‐h long experiment, the pH value of the suspensions was below 9, where the hydrolysis remained in the induction period and was eventually suppressed due to the formation of a few‐nanometers‐thick film of amorphous aluminum hydroxide gel around the AlN particles, acting as a passivation layer. Moreover, the aqueous part of the suspension possessed a remarkably high value of dissolved [Al(III)]aq, being an order of magnitude higher at a given pH value than the aqueous AlCl3 solution.  相似文献   

10.
《Ceramics International》2022,48(24):36210-36217
In this work, the influence of Al-metal powder addition upon that thermal, mechanical and dielectric properties of aluminium nitride (AlN) ceramic was studied. The findings show that adding Al-metal powder improves not only the mechanical and thermal properties of the AlN ceramic but also has no negative impact on its dielectric properties. Based on Y2O3 as sintering aid, the AlN ceramic with 1.0 wt% Al doping were 14.35% higher thermal conductivity, 11.73% higher flexural strength and 59.50% higher fracture toughness than those doped without Al, respectively. This study showed that the addition of Al-metal powder may favor the purifying of the AlN lattice and the formation of homogenous and isolated second phase, which would increase the AlN–AlN interfaces and improve the thermal conductivity. Furthermore, the grain boundaries of AlN ceramics might be strengthened by the isolated second phases due to the thermal mismatch between the second phases and AlN grains, thus strengthening and toughening the AlN ceramic doped with Al. However, the large additive amount of Al powder (>1.0 wt%) was not help the isolation and homogenization of the second phase, giving a deterioration in an AlN ceramic's mechanical and thermal properties. These results suggest that the introduction of an appropriate dose of aluminium metal powder is a simple method that can be used to improve the AlN ceramic's mechanical and thermal properties simultaneously.  相似文献   

11.
《应用陶瓷进展》2013,112(3):146-150
Abstract

The resistance to hydrolysis of aluminium nitride (AlN) powder was improved by coating the surface of the AlN particles with oleic (OA) and 8-hydroxyquinoline (HQ). The treated powders did not react with water at 40°C when soaked for up to 70 h at constant pH, whereas under the same conditions uncoated AlN reacted with water after 2–10 h soaking. However, with an increase in temperature (65–80°C), hydrolysis of the coated powder took place rapidly. The hydrolysis kinetics of AlN powder with OA and HQ films were found to occur in two stages, a diffusion controlled stage and a surface reaction controlled stage, both of which were first order reactions with activation energies of 125 and 114 kJ mol-1, respectively. The increased resistance to hydrolysis was the result of the organic films forming a diffusion barrier between the water and the AlN surface. Hydrolysis of the coated AlN powder at high temperature was attributed to the ready breakdown of the film by erosion by the hot water. This explanation was supported by TG–DTA, XRD, and IR examination.  相似文献   

12.
The use of H2SO4 in boric acid production from colemanite mineral has several problems, related to product impurities, corrosion and environmental discharge limits. To overcome these problems and to increase extraction efficiency of boric acid, heterogeneous reaction between colemanite and CO2 dissolved in H2O was studied at and above supercritical CO2 conditions. Supercritical conditions enhanced the extraction efficiency of boric acid from colemanite mineral, with 96.9% boric acid extraction efficiency being obtained from CO2–colemanite reaction at 60 °C, for 2 h of reaction time for particles in the range of +20–40 μm. A powder crystallized from filtrate of reaction was determined as H3BO3 and the solid formed at the end of reaction was characterized mostly as CaCO3 according to FTIR, XRD, TGA and SEM analyses. The use of supercritical CO2 as a leaching agent in colemanite does not only produce boric acid but also helps to reduce the amount of CO2 in the atmosphere. Based on these facts, supercritical CO2 as extractant makes this process green and sustainable for recovering boric acid from boron minerals.  相似文献   

13.
《Ceramics International》2020,46(13):21182-21189
By generating a periodic impulse-like pressure (2.0–4.4 kPa, 84 s) to actively exchange the gas in synthesis furnace, pure AlN powder of low oxygen content was synthesized via additive free carbothermal reduction and nitridation (CRN) of Al2O3 powder. Compared with the conventional CRN method, the proposed extra gas exhaust process can more effectively remove the side-produced CO from the reaction sites to accelerate nitridation process and decrease the residual oxygen content in the obtained AlN powder. For example, with 39 wt% activated carbon loaded in the raw material at 1650 °C for 4 h, the prepared AlN powder by the proposed synthesis scheme has only 0.68 wt% residual oxygen. The effects of carbon content, synthesis temperature and holding time on the residual oxygen content in AlN powder by the proposed synthesis scheme were also studied. The ball-milled as-prepared AlN powder was pressureless sintered at 1880 °C for 2.5 h to obtain a translucent AlN ceramics (37.6% at ~5700 nm), which demonstrates the excellent sinterability of the as-prepared AlN powder.  相似文献   

14.
《Ceramics International》2016,42(8):9565-9570
Zirconium diboride (ZrB2) was synthesized by a solution-based technique using zirconyl chloride (ZrOCl2·8H2O, ZOO), boric acid (H3BO3, BA) and gum karaya (GK) as the sources of zirconium, boron and carbon, respectively. The initial formation temperature of ZrB2 was 1200 °C and complete conversion was achieved by 1400 °C. Preceramic precursors and as-synthesized ZrB2 powders were characterized by XRD, TG-DTA, SEM, TEM, EDX and compared with commercial ZrB2 powder made by carbothermic reduction. FT-IR of as-synthesized dried preceramic precursor revealed the formation of Zr–O–C and Zr–O–B whereas SEM showed agglomerated spherical particles with mean diameter of <1 µm. Commercial ZrB2 and as-synthesized fine ZrB2 powder were spark plasma sintered (SPS) at 1900 °C for 10 min. Addition of 10 wt% of synthesized fine powder improved the fired density from 87% to 93% of theoretical. A significant cost benefit arises for the utilization of cheap synthesized fine powder as an additive for the densification of the more expensive commercial powder.  相似文献   

15.
TiB2–AlN–SiC (TAS) ternary composites were prepared by reactive hot pressing at 2000°C for 60 min in an Ar atmosphere using TiH2, Si, Al, B4C, BN and C as raw powders. The phase composition was determined to be TiB2, AlN and β-SiC by XRD. The distribution of elements Al and Si were not homogeneous, which shows that to obtain a homogeneous solid solution of AlN and SiC in the composites by the proposed reaction temperatures higher than 2000°C or time duration longer than 60 min are needed. The higher fracture toughness (6·35±0·74 MPa·m1/2 and 6·49±0·73 MPa·m1/2) was obtained in samples with equal molar contents of AlN and SiC (TAS-2 and TAS-5) in the TAS composites. The highest fracture strength (470±16 MPa) was obtained in TAS-3 sample, in which the volume ratio of TiB2/(AlN+SiC) was the nearest to 1 and there was finer co-continuous microstructure. ©  相似文献   

16.
Boron carbide (B4C) coatings on diamond offer potential for obtaining homogeneous B4C-diamond composites with improved properties. A method was developed for coating diamond particles with B4C at 1150 °C under argon atmosphere for dwell times of 2–6 hours in a powder mixture of boric acid (H3BO3) and amorphous boron. The B4C coating showed very good adhesion to the diamond substrate, and an unusual five-fold symmetry thought to be due to a twinned growth mechanism. The sudden onset of nucleation at T > 1000 °C is ascribed to the stabilising effect of hydrogen from the decomposition of H3BO3 on the diamond surface reactivity.  相似文献   

17.
《Ceramics International》2020,46(13):21172-21181
A mesophase of Al2OC was first determined in AlN powder synthesized in batch quantities via a carbothermal reduction nitridation (CRN) process. The formation and elimination mechanisms of the mesophase were investigated. Effects of the mesophase on properties of the AlN ceramic substrates were evaluated via bending strength and thermal conductivity tests of the substrates fabricated with AlN powder of different O contents. At the conditions of the synthetic furnace, i.e. T = 1700 °C, PN2 = 10−5 kPa, and PCO = 10−0.008–100.973 kPa, the formation of Al2OC is thermodynamically favorable. By increasing the flow rate of N2 in the synthetic furnace, the formed Al2OC was unstable and decomposed into AlN. The properties of the AlN substrates depend on the O content of the AlN powder. The thermal conductivity/bending strength of the AlN substrates increase or decrease, accordingly, based the O content of the reduced AlN powder. AlN substrates made of AlN powder with 0.84 wt% oxygen content show a thermal conductivity and bending strength of 176.3 W/(m·K) and 421.3 MPa, respectively.  相似文献   

18.
Hexagonal boron nitride (h-BN) fibers were synthesized via the polymeric precursor method using boric acid (H3BO3) and melamine (C3H6N6) as raw materials. The precursor fibers were synthesized by a water bath and BN fibers were prepared from the precursor at 1600 °C for 3 h in flowing nitrogen atmosphere. The products were characterized by X-ray powder diffraction, Fourier transformation infrared spectroscopy, thermogravimetry and scanning electron microscopy. The results showed that h-BN fibers with uniform morphology were successfully fabricated. The well-synthesized fibers were 1–2 μm in diameter and 200–500 μm in length.  相似文献   

19.
《Ceramics International》2023,49(13):22022-22029
The in-situ controllable synthesis of AlN–SiC solid solution reinforcement in large-sized Al–Si3N4–Al2O3 composite refractory by two-steps nitriding sintering was examined. In the first step, a dynamic Al@AlN structure was constructed in the composite by pre-nitriding at 580 °C. During the subsequent sintering process, it cracked above ∼900 °C, and micronized Al cluster (mixture of droplets and vapor) was extracted out gradually. As a result, multiple AlN mesophases were formed through different reaction paths, including i) initial AlN shell formed by solid Al with N2, ii) reaction of Al cluster with N2, and iii) reaction of Al cluster with Si3N4 from 900 °C to 1500 °C. The Si3N4 precursor serves as both a solid nitrogen source and an active Si source, and the controllable reaction between Al and Si3N4 leading to uniformly distributed AlN and Si mesophases. AlN–SiC solid solution is significantly formed when liquid Si appears. The shell, granule and whisker SiC–AlN solid solution were observed mainly depending on the dynamic AlN mesophase. The SiC–AlN solid solution reinforced Al2O3 materials is a novel promising refractory for large-scale blast furnace lining.  相似文献   

20.
A two-step approach for macro-synthesis of AlN nanowires was developed in this study. The Al nano-particles were first prepared by directly injecting a rough Al powder (20–50 μm in size) into N2 thermal plasma jet, subsequently the formed nano-particles were heated at 1100 °C in N2 atmosphere for 3 h, and finally at least 31% of the as-heated intermediate was transformed into the separable AlN nanowires. It provides a new route employing nano-particles as precursors to fabricate nanowires, and this achievement is also a significant work for large-scale production and commercial application of AlN nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号