首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 500 毫秒
1.
环己烯是一种非常重要的有机化工原料,广泛应用于医药、农药、染料、洗涤剂、炸药、饲料添加剂、聚酯和其它精细化学品的生产。苯选择加氢合成环己烯是大批量获得环己烯的最佳方法。本文从苯选择加氢的反应机理、催化剂活性组分、催化剂制备方法、反应体系组成以及反应工艺方面,综述了苯选择性加氢制备环己烯技术的研究进展。  相似文献   

2.
钌系催化剂是苯加氢制备环己烯反应中最有效的催化剂。文章综述了国内外苯选择加氢制环己烯催化剂的发展历程,重点介绍了活性组分、载体、助剂、制备方法及添加剂对钌催化剂活性及选择性的影响,分析了其影响原因,并指出了提高钌系催化剂效率的关键因素,为高效能的催化剂探索指明了发展方向。  相似文献   

3.
目前苯选择加氢制环己烯催化剂已广泛应用于合成纤维工业及其它领域中。本文综述了国内外苯选择加氢制环已烯催化剂的研究现状,重点介绍了活性组分、载体、助剂、制备方法及添加剂对催化剂活性及选择性的影响,分析了其影响原因,并指出了提高环己烯选择性的关键因素,最后在此基础上展望了苯选择加氢催化剂的发展方向。  相似文献   

4.
房承宣  王亚涛  董森 《化工进展》2011,(7):1473-1477
目前苯选择加氢制环己烯催化剂已广泛应用于合成纤维工业及其它领域中。本文综述了国内外苯选择加氢制环已烯催化剂的研究现状,重点介绍了活性组分、载体、助剂、制备方法及添加剂对催化剂活性及选择性的影响,分析了其影响原因,并指出了提高环己烯选择性的关键因素,最后在此基础上展望了苯选择加氢催化剂的发展方向。  相似文献   

5.
环己烯是一种非常重要的有机化工原料,苯选择加氢制环己烯是获取高产量环己烯的最佳途径。长期以来科研工作者们都致力于开发出具有高选择性高收率制环己烯的钌基催化反应体系,然而环境因素使其在工业上大规模应用受到了限制,因此有必要对该领域进一步的深入研究。绿色催化是当下研究的热点之一,开发具有负载少钌且无需反应添加剂的高亲水性催化剂的这一趋势在今后的绿色化学发展中势必加强,因此苯选择加氢制环己烯的技术开发是一项极富有经济意义与科研挑战性的课题。本文从苯选择加氢的反应工艺技术、发展历程、钌基催化剂的反应体系组成以及反应机理等方面,系统介绍了苯选择性加氢制备环己烯的技术进展。  相似文献   

6.
钌催化苯选择加氢制环己烯的研究进展   总被引:2,自引:0,他引:2  
介绍了钌催化苯选择加氢制环己烯这一经济、安全、高效的环己烯制备新工艺的研究进展,着重介绍了液相法苯选择加氢制环己烯钌系催化剂的研究及其对苯液相选择加氢制环己烯反应的各种影响。指出钌催化剂应用于苯相选择国氢制环己烯一般选择反应温度为150℃-190℃,压力为4MPa-5MPa,加入助催化剂及添加剂可以提高环己烯的收率,钌催化苯液相选择加氢制环己烯的反应是一个非常复杂的四相(水、气、油、固)反应体系,对这个四相复杂反应体系的深入研究,有助于找出加快环己烯从催化剂表面脱附的方法,进一步提高环己烯的收率。  相似文献   

7.
钌催化苯选择加氢制环己烯的研究进展   总被引:8,自引:0,他引:8  
介绍了钌催化苯选择加氢制环己烯这一经济、安全、高效的环己烯制备新工艺的研究进展,着重介绍了液相法苯选择加氢制环己烯钌系催化剂的研究及其对苯液相选择加氢制环己烯反应的各种影响,指出钌催化刘应用于苯液相选择加氢制环己烯一般选择反应温度为150℃~190℃,压力4MPa~5MPa,加入助催化剂及添加剂可以提高环己烯的收率.钌催化苯液相选择加氢制环己烯的反应是一个非常复杂的四相(水、气、油、固)反应体系,对这个四相复杂反应体系的深入研究,有助于找出加快环己烯从催化剂表面脱附的方法,进一步提高环己烯的收率.  相似文献   

8.
液相法苯选择加氢制环己烯反应条件的探讨   总被引:1,自引:0,他引:1  
采用化学还原法制备负载型钌催化剂,进行了苯选择加氢制环己烯。研究了反应温度、氢气压力、搅拌速率、反应时间对苯转化率、环己烯选择性及收率的影响。结果表明:在最佳反应条件下,反应温度为140℃、氢气压力为6.0MPa、搅拌速率为900r/min、反应时间为20min时,苯转化率为76.27%,环己烯选择性为68.33%,环己烯收率为52.12%。  相似文献   

9.
环己烯是重要化工中间体。目前,工业苯部分加氢反应制环己烯的催化剂是钌锌纳米颗粒催化剂。分析苯部分加氢催化剂组分对苯部分加氢反应选择性影响的因素,进而分析出生产中出现的催化剂活性缓慢劣化导致环己烯收率降低原因。通过热力学计算出生产反应中相应工艺参数。根据计算数据,优化生产工艺指标促使催化剂活性稳定,提高了目标产物环己烯的收率。  相似文献   

10.
苯部分加氢制环己烯钌基催化剂研究进展   总被引:1,自引:0,他引:1  
环己烯是重要的化工原料及中间体,广泛应用于合成纤维及其他工业领域。介绍了苯部分加氢制环己烯的技术路线,该技术路线具有安全环保和节能高效的特点,其中,催化反应体系是该技术的关键要素。重点概述了近年来对液相苯部分加氢催化体系中钌基催化剂的研究,包括催化剂前驱体、催化剂制备方法、载体、助催化剂以及添加剂对催化剂性能和产物选择性等的影响。介绍了已工业化的旭化成和神马集团的苯部分加氢工艺。环己烯的市场前景广阔,苯部分加氢工艺是一条经济效益高的工艺路线,实现催化体系的突破对于该工艺至关重要,但存在催化剂成本高、易失活和环己烯收率低的问题。  相似文献   

11.
Ruthenium catalysts were prepared in different alcohols by a chemical mixing technique, characterised by the preparation of a homogeneous solution containing catalyst components, and the uniform coagulation of the solution through hydrolysis. The technique has the potential for controlling the surface area of the catalysts and for making them porous. The ruthenium catalysts were much more effective for the partial hydrogenation of benzene to cyclohexene (maximum cyclohexene yield, 31.4%) in the absence of any poison such as alkali metal hydroxide or transitional metal sulphate in the reaction solution.  相似文献   

12.
Two types of impregnation solvents were suggested for preparation of the ruthenium supported catalysts. Charcoal, silica, alumina and titania supports were used. Special attention was paid to reduction and activation conditions of nonreduced and passivated forms, respectively. Hydrogenation of 1-heptene, cyclohexene, benzene and acetophenone in the liquid phase were studied using the prepared catalysts.  相似文献   

13.
以三氯化钌(RuCl3)、硫酸锌(ZnSO4)和硫酸亚铁(FeSO4)为原料,采用共沉淀法制备Ru-Zn及Ru-Fe-Zn催化剂,研究了苯选择加氢制环己烯过程中助剂Zn和Zn/Fe对Ru系催化剂催化加氢性能的影响,并利用透射电镜等对催化剂进行表征。结果表明:Ru-Zn催化剂粒子清晰较为分散,Ru-Fe-Zn催化剂粒径变大,比表面积变小;Ru系催化剂中加入助剂Zn,Ru/Zn摩尔比为7时,环己烯选择性较高,加入第三组分Fe,Zn/Fe摩尔比为10,环己烯选择性进一步提高;Ru-Fe-Zn催化剂具有很好的催化活性和稳定性,苯转化率达54.9%,环己烯选择性达81.8%。  相似文献   

14.
A series of Ru/Al2O3/cordierite monolithic catalysts were prepared and characterized by BET, XRD, TPR, TEM and SEM-EDAX. The catalytic performances in selective hydrogenation of benzene to cyclohexene were investigated in a continuous fixed-bed reactor. The preparation conditions significantly influence morphology, particle size, and surface area of the catalyst, subsequently affecting the catalytic performances. It was found that higher calcination temperature of the Ru-based monolithic catalyst led to the conglomeration and crystallite growth of the t-RuO2, which will decrease the catalytic activity. The lower thickness and the larger pore size of the alumina washcoating layer are the preferential choices to obtain higher cyclohexene selectivity due to the improved internal mass transfer of cyclohexene. It was also found that high ruthenium loading resulted in deep hydrogenation of cyclohexene. Moreover, the reduction temperature was optimized to 473 K and excess high temperature led to the deterioration of both activity and cyclohexene selectivity.  相似文献   

15.
L. Ronchin  L. Toniolo   《Catalysis Today》2001,66(2-4):363-369
The selective hydrogenation of benzene to cyclohexene in the presence of Ru supported catalysts has been investigated in a tetraphase slurry reactor at 423 K, at 5 MPa of pressure, in the presence of two liquid phases: benzene and an aqueous solution of ZnSO4 (0.6 mol l−1). A study of the influence of the transport phenomena on the reactivity of the catalyst has been carried out. But no correlation between Carberry and Wheeler–Weisz numbers and the selectivity of the catalysts has been found. The main features of the catalysts are the strong dependence between the catalysts preparation procedure and their activity and selectivity. The best results have been observed with Ru/ZrO2 catalysts. The influence of the bases employed in the precipitation of the catalysts precursor has also been investigated. KOH is the most effective, yield of 41% and initial selectivity of 80% of cyclohexene has been observed.  相似文献   

16.
The photocatalytic oxidative dehydrogenation of cyclohexane on sulphated MoOx/γ-Al2O3 catalysts has been studied in a two-dimensional fluidized bed photoreactor. The influence of Mo loading at similar sulphate content and the effect of catalyst preparation method have been investigated.Considering the influence of Mo loading at similar sulphate content, the highest photoactivity at 2.4 SO4 wt% was found at MoO3 loading of 8 wt%. Selectivity to cyclohexene was 100%, irrespective of the Mo content.At fixed MoOx content, in particular at 50% of theoretical monolayer coverage, the preparation method of catalysts strongly affected the photocatalysts performances, showing in addition a slight decrease in selectivity to cyclohexene due to side-production of benzene. All the catalysts showed a similar equivalent band gap energy. Thermogravimetric analysis evidenced the presence of surface sulphate species of different thermal stabilities. A linear correlation of photoactivity with the surface sulphates amount of lower thermal stability has been found for all sub-monolayer MoOx sulphated catalysts. The neighboring of surface sulphates to octahedral polymolybdate species appears to be a key parameter for the photoactivity of the catalysts.The catalyst selectivity was related to surface acidity. Higher acidity resulted in increased cyclohexene dark adsorption and consequently in enhanced benzene formation.  相似文献   

17.
Selective hydrogenation of benzene to cyclohexene has been studied in a high pressure slurry reactor using supported ruthenium catalysts. The organic base monoethanolamine (MEA) was found to give better selectivities than the conventional inorganic salt additive (zinc sulphate). Parameters studied were the effects of various supports such as alumina, silica, titania, zirconia, niobium oxide, etc., benzene to water ratio, catalyst weight, and presence of cyclohexane in the feed. Reusability of the catalyst was also studied. © 1997 SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号