首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
We report an in situ thermal reduction of graphene oxide (GO) in a styrene–ethylene/butylene–styrene (SEBS) triblock copolymer matrix during a melt‐blending process. A relatively high degree of reduction was achieved by melt‐blending premixed GO/SEBS nanocomposites in a Haake mixer for 25 min at 225 °C. Infrared spectral results revealed the successful thermal reduction of, and the strong adsorption of SEBS on, the graphene sheets. The glass transition temperature of polystyrene (PS) segments in SEBS was enhanced by the incorporation of thermally reduced graphene oxide (TRGO). The resultant TRGO/SEBS nanocomposites were used as a masterbatch to improve the mechanical properties of PS. Both the elongation at break and the flexural strength of PS/SEBS blends were enhanced with the addition of the TRGO. Our demonstration of the in situ thermal reduction of GO via melt blending is a simple, efficient strategy for preparing nanocomposites with well‐dispersed TRGO in the polymer matrix, which could be an important route for large‐scale fabrication of high‐performance graphene/polymer nanocomposites. © 2013 Society of Chemical Industry  相似文献   

2.
Thermally-reduced graphene oxide/TiO2 composites (TRGO/Ti) were prepared by the thermal reduction of graphene oxide/TiO2 composite that was obtained from a simple, environmentally friendly, one-step colloidal blending method. The changes in structural and textural properties as well as their corresponding photocatalytic activities were investigated as a function of calcination temperature. The presence of stacked TRGO sheets significantly retarded both the aggregation and the crystalline phase transformation of TiO2 as increasing the temperature from 200 to 600 °C. TRGO/Ti composites exhibited higher photocatalytic activity for the degradation of methylene blue in comparison with pure TiO2 due to the increase in specific surface area and the formation of π-π conjugations between dye compounds and aromatic regions of TRGO. However, increasing the calcination temperature resulted in the lower photoactivity and slower kinetics, which can be ascribed to the decrease in surface area, the reduction of oxygen vacancies, and the loss of functional groups at the edges or on the basal planes of the TRGO sheets.  相似文献   

3.
Pt–Cu/reduced graphene oxide (Pt–Cu/RGO) hybrids with different Pt/Cu ratios were prepared by the reduction of H2PtCl6 and CuSO4 by NaBH4 in the presence of graphene oxide (GO). The Pt–Cu nanoparticles were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The reduction of GO was verified by ultraviolet–visible absorption spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Compared to Pt/RGO, the Pt–Cu/RGO hybrids have superior electrocatalytic activity and stability for the oxidation of methanol and formic acid. Thus they should have potential applications in direct methanol and formic acid fuel cells.  相似文献   

4.
In this article polyaniline (PANI) nanocomposites containing thermally reduced graphene oxide (TRGO) were synthesized and characterized before and after thermal aging. The nanocomposites were prepared through in situ oxidative polymerization of aniline in the presence of TRGO nanoplatelets. FTIR and Raman spectroscopies, XRD, FESEM, and electrical conductivity measurements were used to characterize synthesized materials. PANI/TRGO nanocomposites showed considerably higher electrical conductivity when compared to pure PANI, which was associated with the higher electrical conductivity of TRGO and increased crystallinity of PANI in the presence of TRGO. Pure PANI and PANI/TRGO nanocomposites were thermally aged at 70, 80, 90, and 100 °C. The results showed that the characteristic time of thermal aging process is higher for PANI/TRGO nanocomposites and increases with TRGO loading, which indicates better stability of conductivity during thermal aging process. On the other hand, the characteristic time of thermal aging reduced with aging temperature and a fast decrease was observed from 80 to 90 °C. Improved resistance over thermal aging can be attributed to the barrier effect of TRGO nanoplatelets to the dopant molecules, which retards conductivity degradation in the thermal aging process. Furthermore, TRGO increases PANI crystallinity and it can also prevent crystallinity reduction during thermal aging process. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44635.  相似文献   

5.
Graphene oxide (GO) and thermally reduced graphene oxide (TRGO) were covalently modified with imidazolium salts through their hydroxyl surface groups. The selective reaction of the –OH groups with p-nitrophenylchloroformate produced labile intermediate organic carbonate functions which were used for the covalent anchoring of a hydroxy-functionalized imidazolium salt. Nanohybrid materials containing iridium N-heterocyclic carbene (NHC)-type organometallic complexes were prepared by causing the imidazolium-functionalized materials to react with [Ir(μ-OMe)(cod)]2. The iridium content of the graphene-based hybrid catalysts, as determined by XPS and ICP-MS was the order of ∼5 and 10 wt.%, for the TRGO and GO-based materials, respectively. The graphene-supported iridium hybrid materials were active in the heterogeneous hydrogen-transfer reduction of cyclohexanone to cyclohexanol with 2-propanol/KOH as the hydrogen source. The thermally reduced graphene–NHC–iridium hybrid catalyst showed the best catalytic performance with an initial TOF of 11.500 h−1, slightly better than the related acetoxy-functionalized NHC iridium homogeneous catalyst. A good catalyst recyclability and stability were achieved.  相似文献   

6.
A simple and environment-friendly method was used to prepare Pt/reduced graphene oxide (Pt/RGO) hybrids. This approach used a redox reaction between Na2PtCl4 and graphene oxide (GO) nanosheets and a subsequent thermal reduction of the material at 200 °C for 24 h in a vacuum oven. In contrast to other methods that use an additional reductant to prepare Pt nanoparticles, the Pt2+ was directly reduced to Pt0 in the GO solution. GO was used as the reducing agent, the stabilizing agent and the carrier. The resulting Pt/RGO hybrid was characterized by X-ray diffraction, thermo-gravimetric analysis, X-ray photoelectron spectroscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. Electrochemical measurements showed that the Pt/RGO hybrids exhibit good activity as catalysts for the electro-oxidation of methanol and ethanol in acid media. Interestingly, the Pt/RGO hybrids showed better electrocatalytic activity and stability for the oxidation of methanol than Pt/C and Pt/RGO hybrids made from other Pt precursors. This indicates that the Pt/RGO hybrids should have great potential applications in direct methanol and ethanol fuel cells.  相似文献   

7.
The implementation of green approaches towards the preparation of graphene and graphene-based materials with enhanced functionality from graphite oxide has been relatively little explored. Particularly, the use of bioreductants and the testing of their relative efficacies is an incipient area of research. Here, a pool of 20 environmentally friendly, natural antioxidants have been tested for their ability to reduce graphene oxide. These antioxidants were mostly vitamins, amino acids and organic acids. By establishing a protocol to systematically compare and optimize their performance, several new efficient bioreductants of graphene oxide have been identified, namely, pyridoxine and pyridoxamine (vitamin B6), riboflavin (vitamin B2), as well as the amino acids arginine, histidine and tryptophan. These biomolecules were used to prepare reduced graphene oxide–silver nanoparticle hybrids that displayed colloidal stability in water in the absence of additional dispersants. Particularly, hybrids prepared with pyridoxamine exhibited a combination of long-term colloidal stability and exceptionally high catalytic activity among silver nanoparticle-based catalysts in the reduction of p-nitrophenol with NaBH4. Thus, in addition to expanding substantially the number of green reductants available for graphene oxide reduction, the present results underline the idea that proper selection of bioreductant can be relevant to achieve graphene-based materials with improved performance.  相似文献   

8.
An environment-friendly approach to synthesizing reduced graphene oxide (RGO) was developed by using chitosan (CS) as both a reducing and a stabilizing agent. Factors that affect the reduction of graphene oxide (GO), such as the ratio of CS/GO, pH and temperature, were explored to obtain optimum reaction conditions. The RGO was characterized with UV visible absorption spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction spectroscopy, thermo-gravimetric analysis, and X-ray photoelectron spectroscopy and transmission electron microscopy. Analysis shows that CS macromolecules can efficiently reduce GO at a comparatively low temperature and their adsorption onto the RGO nanosheets allows a stable RGO aqueous dispersion to be formed. Since CS is a natural, nontoxic and biodegradable macromolecule, this approach provides a new green method for GO reduction that would facilitate the large scale production of RGO, which has great value for graphene applications. Moreover, CS can reduce GO and AgNO3 (or HAuCl4) in one pot to obtain Ag nanoparticle-RGO hybrids or Au nanoparticle-RGO hybrids that exhibit good electrochemical activity.  相似文献   

9.
Mn3O4–graphene (Mn3O4–GR) hybrids were synthesized using a one-step strategy under solvothermal conditions. During this process graphene oxide (GO) was reduced to GR and at the same time ultrafine Mn3O4 nanoparticles (NPs) with a size of ∼10 nm were uniformly anchored on the GR sheets. The Mn3O4–GR hybrids showed promising catalytic effects for the thermal decomposition of ammonium perchlorate (AP). The decomposition temperature was decreased by 141.9 °C and only one decomposing step was observed instead of common two in reported literature. This improved performance in the catalytic reaction is closely related to the synergistic effect of Mn3O4 and GR.  相似文献   

10.
Graphitic carbon nitride (g-C3N4) and its derivatives are promising candidates as catalysts or supports for photocatalytic applications. Since they are typically produced by polymerization or condensation of monomers under high temperature and high pressure, development of a cost-effective, solution-based, low-temperature method of production is important. Herein, novel hybrid materials composed of g-C3N4 and reduced graphene oxide are produced using a simple reaction between graphene oxide and cyanamide using a solution-based process. During the reaction, reduction of graphene oxide and graphene oxide-assisted generation of g-C3N4 occurred simultaneously. These hybrids show good photocatalytic performance for the removal of organic dyes under one sun solar light illumination.  相似文献   

11.
Graphenation of corundum and silicon carbide filler particles simultaneously improves mechanical properties and electrical conductivity of nonisocyanate polyhydroxyurethanes (NIPU) composites prepared by amine cure of polyfunctional cyclic carbonates. Typically, the ceramic fillers coated with either glucose, polydopamine, or graphite oxide (GO) are thermolyzed to produce an ultrathin graphene shell around the ceramic core, as verified by transmission electron microscopy. As compared to a blend of corundum particles with the thermally reduced graphite oxide (TRGO) nanofiller, graphenation of corundum with GO at a similar total carbon content significantly improves the Young’s modulus (7000 MPa, +184%) of trimethylolpropane glycidylether carbonate (TMPGC) cured with diethylenetriamine (DETA). Moreover, up to 30 wt% of the graphenated corundum filler is uniformly dispersed, whereas a few percent of neat TRGO account for intolerable high viscosity. Furthermore, NIPU composites containing graphenated ceramic fillers exhibit electrical conductivities of up 2.58 × 10?5 S m?1 well below the percolation threshold of neat TRGO in the same NIPU matrix. Hence, the graphenation of inorganic particles represents a facile and universal synthetic route toward tailoring functional fillers and combines the two worlds of functionalized graphene and inorganic fillers in an economic way by eliminating the tedious syntheses and handling typical for graphene nanofillers.  相似文献   

12.
A family of layered double hydroxides (LDHs) with varied Fe contents were employed as catalyst precursors for the controllable bulk growth of few-layer graphene/single-walled carbon nanotube (G/SWCNT) hybrids in a fluidized-bed reactor through chemical vapor deposition of methane at 950 °C. All the G/SWCNT hybrids exhibited the morphology of SWCNTs interlinked with graphene layers. The purity, thermal stability, graphitization degree, specific surface area, and total pore volume of the G/SWCNT hybrids decreased with the increasing Fe contents in the LDH precursors. A high yield of 0.97 gG/SWCNTs/gcat can be achieved by tuning the Fe content in the FeMgAl LDHs after a 15-min growth. After the removal of the as-calcined FeMgAl layered double oxide flakes, a high carbon purity of ca. 98.3% for G/SWCNT hybrids was achieved when the mole ratio of Fe–Al is 0.05:1. The size and density of Fe nanoparticles decorated in the as-obtained G/SWCNT hybrids depend largely on Fe content in the FeMgAl LDH precursors. Furthermore, the mass ratio of graphene materials to SWCNTs in the as-prepared G/SWCNT hybrids can be well controlled in a range of 0.4–15.1.  相似文献   

13.
Much attention has been increasingly focused on the applications of noble metal nanoparticles (NPs) for the catalytic degradation of various dyes and pigments in industrial wastewater. We have demonstrated that Pd NPs/Fe3O4-PEI-RGO nanohybrids exhibit high catalytic activity and excellent durability in reductive degradation of MO, R6G, RB. Specific surface area was successfully prepared by simultaneous reduction of Pd(OAc)2 chelating to PEI grafted graphene oxide nanosheets modified with Fe3O4. The as-prepared Pd NPs/Fe3O4-PEI-RGO nanohybrids were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, high-resolution TEM and energy dispersive X-ray spectroscopy, and UV-lambda 800 spectrophotometer, respectively. The catalytic activity of Pd NPs/Fe3O4-PEI-RGO nanohybrids to the degradation of MO, R6G, RB with NaBH4 was tracked by UV-visible spectroscopy. It was clearly demonstrated that Pd NPs/Fe3O4-PEI-RGO nanohybrids exhibited high catalytic activity toward the degradation of dyes and pigments, which could be relevant to the high surface areas of Pd NPs and synergistic effect on transfer of electrons between reduced graphene oxide (RGO), PEI and Pd NPs. Notably, Pd NPs/Fe3O4-PEI-RGO nanohybrids were easily separated and recycled thirteen times without obvious decrease in system. Convincingly, Pd NPs/Fe3O4-PEI-RGO nanohybrids would be a promising catalyst for treating industrial wastewater.  相似文献   

14.
The temperature used in the chemical reduction of graphene oxide (GO) with hydroiodic acid has a significant influence on the removal of surface oxygenated functional groups, on the residual iodine species and on the rupture, stacking and graphitization of the graphene sheets in the reduced graphene oxides. The modification in the characteristics of the reduced graphene oxides induces changes in the surface area, the exposition of reduced graphene oxide entities and in the concentration of small CdS nanocrystals with strong confinement effect on the CdS-reduced graphene oxide hybrids. The hybridization of the reduced graphene oxide with CdS modifies in different way their photocatalytic behavior for hydrogen production from aqueous solutions of Na2S and Na2SO3 under simulated sunlight irradiation. Only the hybrid formed between the CdS and the reduced graphene oxide treated at higher temperature showed improved hydrogen production rate respect to the bare CdS reference associated with the better conductivity of the reduced graphene oxide and with the increase in the concentration of small CdS nanocrystals sith strong confinement effect observed in the hybrid.  相似文献   

15.
Graphene/silicon nitride (Si3N4) composites with high fraction of few layered graphene are synthesized by an in situ reduction of graphene oxide (GO) during spark plasma sintering (SPS) of the GO/Si3N4 composites. The adequate intermixing of the GO layers and the ceramic powders is achieved in alcohol under sonication followed by blade mixing. The reduction of GO occurs together with the composite densification in SPS, thus avoiding the implementation of additional reduction steps. The materials are studied by X-ray photoelectron and micro-Raman spectroscopy, revealing a high level of recovery of graphene-like domains. The SPS graphene/Si3N4 composites exhibit relatively large electrical conductivity values caused by the presence of reduced graphene oxide (∼1 S cm−1 for ∼4 vol.%, and ∼7 S cm−1 for 7 vol.% of reduced-GO). This single-step process also prevents the formation of highly curved graphene sheets during the thermal treatment as the sheets are homogeneously embedded in the ceramic matrix. The uniform distribution of the reduced GO sheets in the composites also produces a noticeable grain refinement of the silicon nitride matrix.  相似文献   

16.
We describe a novel approach for coupling pristine graphene with superparamagnetic iron oxide nanoparticles to create dispersed, magnetically responsive hybrids. The magnetic iron oxide (Fe3O4) nanoparticles are synthesized by a co-precipitation method using ferric (Fe3+) and ferrous (Fe2+) salts and then grafted with polyvinylpyrrolidone (PVP). These PVP-grafted Fe3O4 nanoparticles are then used to stabilize colloidal graphene in water. The PVP branches non-covalently attach to the surface of the pristine graphene sheets without functionalization or defect creation. These Fe3O4–graphene hybrids are stable against aggregation and are highly responsive to external magnetic fields. These hybrids can be freeze-dried to a powder or magnetically separated from solution and still easily redisperse while retaining magnetic functionality. At all stages of synthesis, the Fe3O4–graphene hybrids display no coercivity after being brought to magnetic saturation, confirming superparamagnetic properties. Microscopy and light scattering data confirm the presence of pristine graphene sheets decorated with Fe3O4 nanoparticles. These materials show promise for multifunctional polymer composites as well as biomedical applications and environmental remediation.  相似文献   

17.
Homogeneous dispersion and strong filler–matrix interfacial interactions were vital factors for graphene for enhancing the properties of polymer composites. To improve the dispersion of graphene in the polymer matrix and enhance the interfacial interactions, graphene oxide (GO), as an important precursor of graphene, was functionalized with amine‐terminated poly(ethylene glycol) (PEG–NH2) to prepare GO–poly(ethylene glycol) (PEG). Then, GO–PEG was further reduced to prepare modified reduced graphene oxide (rGO)–PEG with N2H4·H2O. The success of the modification was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and Raman spectroscopy. Different loadings of rGO–PEG were introduced into polyimide (PI) to produce composites via in situ polymerization and a thermal reduction process. The modification of PEG–NH2 on the surface of rGO inhibited its reaggregation and improved the filler–matrix interfacial interactions. The properties of the composites were enhanced by the incorporation of rGO–PEG. With the addition of 1.0 wt % rGO–PEG, the tensile strength of PI increased by 81.5%, and the electrical conductivity increased by eight orders of magnitude. This significant improvement was attributed to the homogeneous dispersion of rGO–PEG and its strong filler–matrix interfacial interactions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45119.  相似文献   

18.
In this article, graphene/LDH phosphorus-rich triple hybrid was prepared by a mild method and used to effectively improve the thermal stability and smoke suppression of epoxy resin (EP). The graphene was firstly reacted with hexamethylenediamine (HA) and followed by the treatment with the layered double hydroxide (LDH) and NaH2PO4 solutions. Compared to the unmodified graphene, the initial decomposition temperature of the triple hybrids increases significantly from 168.6 to 292.5°C. The residual carbon content is greatly improved and the residual mass is up to 84.1%. Elemental analysis reveals the content of phosphorus in EP composites is as high as 10 wt%. In flame retardancy tests, the peak heat release rate of the EP composite with 5 wt% graphene/LDH phosphorus-rich hybrids decreases to 786.15 KW/m2, 41.19% drastic reduction compared to that of EP. These results indicate that the triple functionalization process effectively expands the interval distribution of heat release and makes the heat release process more gradual and spread flames smaller. The smoke production rate and total smoke production rate of EP composite with 5 wt% graphene/LDH phosphorus-rich hybrids are 0.32 m2/s and 40.91 m2, which are significantly reduced by 65.22 and 57.83%, respectively. This gentle and efficient process provides a new approach to multi-functional design to improve the thermal stability and smoke suppression of resin-based composites.  相似文献   

19.
Ultraporous Pd nanocrystals for electrocatalysis applications were fabricated using a direct electrodeposition method on three differing carbon supports: flexible carbon fiber paper (CFP), and CFP modified with either graphene oxide nanosheets or their chemically reduced forms using a simple spray coating technique. The electrocatalytic activity of these electrodes was investigated for the direct electro‐oxidation reaction of methanol in alkaline media. Pd deposited on the CFP modified with reduced graphene oxide (rGO) has excellent poisoning tolerance to carbonaceous species and a significantly better catalytic activity toward methanol oxidation than the other two catalyst support materials. Pd/rGO/CFP in 2.0 M CH3OH in 2.0 M NaOH yields a specific current density of 241 mAmg–1 cm–2 determined at the anodic oxidation peak. It is believed that the collaborative effects due to the three‐dimensional ultraporous Pd nanocrystals and fast electron transfer owing to high conductivity of rGO nanosheets play an important role in enhancing the catalytic performance of Pd/rGO/CFP toward methanol oxidation in alkali media.  相似文献   

20.
The ultrathin peroxoantimonate coating of graphene oxide from hydrogen peroxide-rich solutions of hydroxoantimonate is demonstrated. An amorphous 1–2 nm Sb (V) oxide film is formed and can be further crystallized by exposure to an electron beam to give a 2–5 nm thick supported Sb6O13 particulate coating. Heat treatment of the peroxoantimonate yielded different crystalline oxides, whereas in the presence of the graphene support only trigonal Sb (0) was produced by heat treatment in vacuum or an argon atmosphere. The graphene oxide support is essential for the formation of the Sb (0) phase and even in air a substantial elemental antimony was obtained. Whereas heat treatment of uncoated graphene oxide in an inert atmosphere produces reduced graphene oxide, the antimony oxide coated graphene oxide is not reduced by the heat treatment. Only after the supported antimony oxide is reduced to give the trigonal Sb (0) phase the graphene oxide was reduced by the heat treatment. The phases before and after the different heat treatments are characterized by electron and X-ray diffraction, thermal analysis, XPS studies, electron microscopy and wet chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号