首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The basic method for synthesizing syndiotactic polystyrene‐g‐polybutadiene graft copolymers was investigated. First, the syndiotactic polystyrene copolymer, poly(styrene‐co‐4‐methylstyrene), was prepared by the copolymerization of styrene and 4‐methylstyrene monomer with a trichloro(pentamethyl cyclopentadienyl) titanium(IV)/modified methylaluminoxane system as a metallocene catalyst at 50°C. Then, the polymerization proceeded in an argon atmosphere at the ambient pressure, and after purification by extraction, the copolymer structure was confirmed with 1H‐NMR. Lastly, the copolymer was grafted with polybutadiene (a ready‐made commercialized unsaturated elastomer) by anionic grafting reactions with a metallation reagent. In this step, poly(styrene‐co‐4‐methylstyrene) was deprotonated at the methyl group of 4‐methylstyrene by butyl lithium and further reacted with polybutadiene to graft polybutadiene onto the deprotonated methyl of the poly(styrene‐co‐4‐methylstyrene) backbone. After purification of the graft copolymer by Soxhlet extraction, the grafting reaction copolymer structure was confirmed with 1H‐NMR. These graft copolymers showed high melting temperatures (240–250°C) and were different from normal anionic styrene–butadiene copolymers because of the presence of crystalline syndiotactic polystyrene segments. Usually, highly syndiotactic polystyrene has a glass‐transition temperature of 100°C and behaves like a glassy polymer (possessing brittle mechanical properties) at room temperature. Thus, the graft copolymer can be used as a compatibilizer in syndiotactic polystyrene blends to modify the mechanical properties to compensate for the glassy properties of pure syndiotactic polystyrene at room temperature. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Well defined poly (styrene‐co‐methylstyrene) grafted polyaniline/organo‐modified MgAl layered double hydroxide (LDH) was produced through solution intercalation method. After LDH nanoparticles were modified by the anion exchange reaction of MgAl (Cl) LDH with sodium dodecyl benzene sulfonate, Poly (styrene‐co‐methylstyrene) copolymers were synthesized by “living” free radical polymerization and then brominated with N‐bromosuccinimide. Afterwards, 1,4‐phenylenediamine was linked to brominated copolymers and prepared functionalized copolymer with amine. Poly (St‐co‐MSt)‐g‐PANI, has been synthesized by adding solution of ammonium persulfate and p‐toluenesufonic acid in DMSO solvent. Finally, Poly (styrene‐co‐methylstyrene) grafted‐Polyaniline/LDH nanocomposites were prepared by solution intercalation method. Characterization of these well‐defined nanocomposites included FT‐IR, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimeter, transmission electron microscopy, and X‐ray diffraction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

3.
Two monodisperse graft copolymers, poly(4‐methylstyrene)‐graft‐poly(tert‐butyl acrylate) [number‐average molecular weight (Mn) = 37,500, weight‐average molecular weight/number‐average molecular weight (Mw/Mn) = 1.12] and polystyrene‐graft‐poly(tert‐butyl acrylate) (Mn = 72,800, Mw/Mn = 1.12), were prepared by the atom transfer radical polymerization of tert‐butyl acrylate catalyzed with Cu(I) halides. As macroinitiators, poly{(4‐methylstyrene)‐co‐[(4‐bromomethyl)styrene]} and poly{styrene‐co‐[4‐(1‐(2‐bromopropionyloxy)ethyl)styrene]}, carrying 40% of the bromoalkyl functionalities along the chain, were used. The dependencies of molecular parameters on monomer conversion fulfilled the criteria for controlled polymerizations. In contrast, the dependencies of monomer conversion versus time were nonideal; possible causes were examined. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2930–2936, 2002  相似文献   

4.
Polyacrylonitrile (PAN)‐based copolymers containing phosphonic acid moiety were synthesized for dehydration of aqueous pyridine solution. The in situ complex, formed between the vinylphosphonic acid (VP) moiety in the membrane and the pyridine in the feed, enhanced separation capacity of poly(acrylonitrile‐co‐vinylphosphonic acid) (PANVP) membranes. All the PAN‐based membranes containing phosphonic acid were very selective toward water. The pervaporation performances of PANVP membranes depended on the content of the phosphonic acid moiety in the membrane and operating temperature. The pervaporation separation of water/pyridine mixtures using PANVP membranes exhibited over 99.8% water concentration in permeate and flux of 4–120 g/m2/h depending on the content of vinylphosphonic acid and operating temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 83–89, 1999  相似文献   

5.
A new blended membrane was prepared and tested by pervaporation of light oil, a mixture of five alcohols plus water. The blended membrane was synthesized by blending poly(vinyl alcohol) and poly(acrylic acid‐co‐maleic acid) sodium salt in the presence of sulfuric acid to dope the reaction. We tested several membranes in order to choose the adequate composition to have the best permselectivity. The PVA(60)–PAA‐co‐maleic acid(40) membrane was selected as it was found to be highly selective. Sorption experiments were performed using binary and ternary water–alcohol solutions. The influence of temperature and feed composition on the selectivity and flux in pervaporation was investigated for two different binary mixtures (water/ethanol, water/isobutanol) and one ternary system (water/ethanol/isobutanol). This membrane presents good permselective properties, high water flux, and good selectivity and can even be used for high‐water activities The performances of this new membrane were compared to those obtained with the PVA(90)–PAA(10) membrane synthesized recently: The fluxes observed for the water–ethanol separation were of the same order of magnitude but the selectivity was found to be much higher. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1709–1716, 2002  相似文献   

6.
Low‐cost polymers poly(styrene) and poly(α‐methylstyrene) have been sulfonated followed by blending with PBIOO® (30 wt % sulfonated ionomer, 70 wt % PBIOO). At this polymer ratio the sulfonated ionomer served as the macromolecular acidic cross‐linker which led to enhancement of the PBIOO stability. Both membrane types were treated with Fenton's Reagent to investigate their resistance to oxidation and radical attack. Indeed, the blend membranes showed enhanced stability in oxidative conditions compared to the pure PBIOO membranes. Furthermore, the sulfonated poly(α‐methylstyrene)‐PBIOO blend membrane showed less weight loss during and after Fenton's Test than the corresponding poly(styrene sulfonic acid)‐PBIOO membrane. Assuming all the characteristics of the blend membrane before and after the Fenton's Test, we concluded for a partial degradation of both sulfonated poly(styrene)s, whereas they remain in the blend membrane matrix due to the acid‐base crosslinking. Thus, since the sulfonated poly((α‐methyl)styrene)‐PBIOO blend membranes conserved their integrity even after Fenton's Test they can be regarded as potential low‐cost high‐T fuel cell membranes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39889.  相似文献   

7.
Functionalized syndiotactic polystyrene copolymers were synthesized and characterized. The syndiotactic polystyrene copolymers, poly(styrene‐co‐4‐methylstyrene) (sPSMS), were prepared by styrene with 4‐methylstyrene with a metallocene/methylaluminoxane catalyst. In addition, grafted copolymers, chemically grafted with isoprene onto an sPSMS backbone [poly(styrene‐co‐4‐methylstyrene)‐g‐polyisoprene (sPSMS‐g‐PIP)] were synthesized by anionic grafting polymerization with a metallation reagent. In this study, we also examined the effect of the degree of functionalization (epoxidation) on the polymer structure of the sPSMS‐g‐PIP copolymers. Experimental results indicate that the crystallinity of the sPSMS‐g‐PIP copolymer was lower than that of the ungrafted sPSMS copolymer. Moreover, the epoxy‐containing sPSMS‐g‐PIP copolymer effectively increased the thermal stability more than did the sPSMS‐g‐PIP copolymer alone. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1038–1045, 2002  相似文献   

8.
For the preparation of a water‐selective membrane for the pervaporation separation of an azeotropic solution, a series of grafted copolymers were synthesized by the reaction of poly(vinyl alcohol) (PVA) with poly(sodium salt styrene sulfonic acid‐co‐maleic acid) (PSStSA‐co‐MA). The esterification was performed between the hydroxyl groups of PVA and the carboxylic groups of the copolymer with a heat treatment. PSStSA‐co‐MA was prepared with sodium salt styrene sulfonic acid and maleic anhydride copolymerization in dimethyl sulfoxide with azobisisobutyronitrile as an initiator. The reaction mechanism and resultant structure were confirmed with IR spectra. The effect of the heat‐treatment time on the gel content was investigated. The permeation flux decreased and the separation factor increased as the crosslinking agent content rose. A membrane containing 15 wt % PSStSA‐co‐MA was used for water–ethanol azeotropic solution pervaporation at 30°C, and a flux of 0.43 kg/m2 h and a separation factor of 190 were obtained. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2854–2859, 2002  相似文献   

9.
In this article, 1‐octene and styrene was copolymerized by the supported catalyst (TiCl4/ID/MgCl2). Subsequently, by sulfonation reaction, sulfonated poly(1‐octene‐co‐styrene)s which were amphiphilic copolymers were prepared. The copolymerization behavior between 1‐octene and styrene is moderate ideal behavior. Copolymers prepared by this catalyst contain appreciable amounts of both 1‐octene and styrene. Increase in the feed ratio of styrene/1‐octene leads to increase in styrene content in copolymer and decrease in molecular weight. As the polymerization temperature increases, the styrene content in the copolymers increases, however, the molecular weight decreases. Hydrogen is an efficient regulator to lower the molecular weights of poly(1‐octene‐co‐styrene)s. The sulfonation degree of the sulfonated poly(1‐octene‐co‐styrene)s increased as the styrene content in copolymer increased or the molecular weight decreased. Thirty‐six hour is long enough for sulfonation reaction. The sulfonated poly(1‐octene‐co‐styrene)s can be used as effective and durable modifying agent to improve the wettability of polyethylene film and have potential application in emulsified fuels and for the stabilization of dispersions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
The present work investigates the structure properties of copolymers using thermogravimetric analysis, hot stage microscopy, static light scattering, field emission scanning electron microscopy, X‐ray diffraction analysis and a Brookfield viscometer. Poly(potassium 1‐hydroxyacrylate) (PKHA) is a water‐soluble polymer. However, the copolymer of styrene and 2‐isopropyl‐5‐methylene‐1,3‐dioxolan‐4‐one is not water soluble at equal molar ratio because the polystyrene reduces the solubility. The effect of styrene on poly(potassium 1‐hydroxyacrylate‐co‐styrene) copolymer, i.e. poly(KHA‐co‐St), was investigated for the increasing solubility of the copolymer. The solubility was increased at a lower molar ratio of styrene such as 0.4 in the copolymer. It was found that the copolymer was soluble in water when a content ratio of 68/32 mol% of homopolymer was incorporated in poly(KHA68co‐St32) copolymer as determined by NMR analysis. Also the poly(KHA68co‐St32) copolymer was found to be salt tolerant, possessed water absorption capacity and was thermally stable up to 183 °C. Moreover, it is shown that the polystyrene content plays a key role in the thermal stability of the copolymer. © 2017 Society of Chemical Industry  相似文献   

11.
A zwitterionic poly(vinyl alcohol‐co‐ethylene) (PVA‐co‐PE) nanofiber membrane for resistance to bacteria and protein adsorption was fabricated by the atom transfer radical polymerization of sulfobetaine methacrylate (SBMA). The PVA‐co‐PE nanofiber membrane was first surface‐activated by α‐bromoisobutyryl bromide, and then, zwitterionic SBMA was initiated to polymerize onto the surface of nanofiber membrane. The chemical structures of the functionalized PVA‐co‐PE nanofiber membranes were confirmed by attenuated total reflectance–Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. The morphologies of the PVA‐co‐PE nanofiber membranes were characterized by scanning electron microscopy. The results show that the poly(sulfobetaine methacrylate) (PSBMA) was successfully grafted onto the PVA‐co‐PE nanofiber membrane, and the surface of the nanofiber membrane was more hydrophilic than that of the pristine membrane. Furthermore, the antibacterial adsorption properties and resistance to protein adsorption of the surface were investigated. This indicated that the PSBMA‐functionalized surface possessed good antibacterial adsorption activity and resistance to nonspecific protein adsorption. Therefore, this study afforded a convenient and promising method for preparing a new kind of soft and nonwoven dressing material with antibacterial adsorption and antifouling properties that has potential use in the medical field. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44169.  相似文献   

12.
This work reports the use of acrylated fatty acid methyl ester (AFAME) as a biomonomer for the synthesis of bio‐based hybrid magnetic particles poly(styrene‐co‐AFAME)/γ‐Fe2O3 produced by miniemulsion polymerization. Poly(styrene‐co‐AFAME)/γ‐Fe2O3 can be tailored for use in various fields by varying the content of AFAME. The strategy employed is to encapsulate superparamagnetic iron oxide nanoparticles (SPIONs) as γ‐Fe2O3 into a styrene/AFAME‐based copolymer matrix. Raman spectroscopy is employed to ensure the formation of the SPIONs (γ‐Fe2O3) obtained by a co‐precipitation technique followed by oxidation of Fe3O4. The functionalization of SPIONs with oleic acid (OA) is carried out to increase the SPIONs–monomer affinity. The presence of OA on the surface of γ‐Fe2O3 is certified by identification of main absorption bands by fourier‐transform infrared spectroscopy (FTIR). Thermal analysis (differential thermogravimetry/differential thermo analysis and differential scanning calorimetry) results of poly(styrene‐co‐AFAME)/γ‐Fe2O3 show an increase in AFAME content leading to a lower copolymer glass transition temperature (T g). Dynamic light scattering (DLS) measurements result in poly(styrene‐co‐AFAME)/γ‐Fe2O3 particles with diameter in the range of 100–150 nm. It is also observed by transmission electron microscopy (TEM) and cryo‐TEM techniques that γ‐Fe2O3 particles are successfully encapsulated into the poly(styrene‐co‐AFAME) matrix.  相似文献   

13.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMAs) (designated as iPMMA, aPMMA, and sPMMA) with approximately the same molecular weight were mixed separately with poly(styrene‐co‐acrylonitrile) (abbreviated as PSAN) containing 25 wt % of acrylonitrile in tetrahydrofuran to make three polymer blend systems. Differential scanning calorimetry (DSC) was used to study the miscibility of these blends. The results showed that the tacticity of PMMA has a definite impact on its miscibility with PSAN. The aPMMA/PSAN and sPMMA/PSAN blends were found to be miscible because all the prepared films were transparent and showed composition dependent glass transition temperatures (Tgs). The glass transition temperatures of the two miscible blends were fitted well by the Fox equation, and no broadening of the glass transition regions was observed. The iPMMA/PSAN blends were found to be immiscible, because most of the cast films were translucent and had two glass transition temperatures. Through the use of a simple binary interaction model, the following comments can be drawn. The isotactic MMA segments seemed to interact differently with styrene and with acrylonitrile segments from atactic or syndiotactic MMA segments. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2894–2899, 1999  相似文献   

14.
A series of free‐standing hybrid anion‐exchange membranes were prepared by blending brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (BPPO) with poly(vinylbenzyl chloride‐co‐γ‐methacryloxypropyl trimethoxy silane) (poly(VBC‐co‐γ‐MPS)). Apart from a good compatibility between organic and inorganic phases, the hybrid membranes had a water uptake of 32.4–51.8%, tensile strength around 30 MPa, and Td temperature at 5% weight loss around 243–261°C. As compared with the membrane prepared from poly (VBC‐co‐γ‐MPS), the hybrid membranes exhibited much better flexibility, and larger ion‐exchange capacity (2.19–2.27 mmol g?1) and hydroxyl (OH?) conductivity (0.0067–0.012 S cm?1). In particular, the hybrid membranes with 60–75 wt % BPPO had the optimum water uptake, miscibility between components, and OH? conductivity, and were promising for application in fuel cells. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Summary: Coupling reactions between terminal functionalized polymer chains were chosen for the synthesis of star‐like polymers consisting of polystyrene and polystyrene‐block‐poly[styrene‐co‐(butyl acrylate)] arms. For the preparation of terminal functionalized polymer chains a side reaction of the 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) mediated free radical polymerization of methacrylates could be used successfully to convert TEMPO terminated polymers into end functionalized polymers. The number of functionalized monomer units attached to the polymer chain is directly related to the TEMPO concentration during this reaction. Different polystyrenes and polystyrene‐block‐poly[styrene‐co‐(butyl acrylate)] block copolymers were functionalized with a variable number of epoxide and alcohol groups at the chain end. For the determination of the optimal reaction parameters for the coupling reactions between these polymer chains, epoxy functionalized polystyrenes were converted with hydroxy functionalized polystyrenes under basic and acidic conditions. By activation with sodium hydride or boron trifluoride star‐like polymers were synthesized under mild conditions. The transfer of the reaction conditions to coupling reactions between end functionalized polystyrene‐block‐poly[styrene‐co‐(butyl acrylate)] copolymers showed that star‐like polymers with more than 12 arms were formed using boron trifluoride as activating agent.

  相似文献   


16.
New types of composite anion‐exchange membranes were prepared by blending of suspension‐produced poly(vinyl chloride) (S‐PVC) and poly(styrene‐co‐butadiene), otherwise known as styrene–butadiene rubber (SBR), as binder, along with anion‐exchange resin powder to provide functional groups and activated carbon as inorganic filler additive. Also, an ultrasonic method was used to obtain better homogeneity. In solutions with mono‐ and divalent anions, the effect of activated carbon and sonication on the morphology, electrochemical properties and selectivity of these membranes was elucidated. For all solutions, ion‐exchange capacity, membrane potential, permselectivity, transport number, ionic permeability, flux and current efficiency of the prepared membranes initially increased on increasing the activated carbon concentration to 2 wt% in the casting solution and then began to decrease. Moreover, the electrical resistance and energy consumption of the membranes initially decreased on increasing the activated carbon loading to 2 wt% and then increased. S‐PVC‐blend‐SBR membranes with additive showed a decrease in water content and a slight decrease in oxidative stability. Also, these membranes showed good monovalent ion selectivity. Structural images of the prepared membranes obtained using scanning optical microscopy showed that sonication increased polymer‐particle interactions and promoted the compatibility of particles with binder. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
The separation of a chlorinated hydrocarbon from a dilute aqueous solution through a crosslinked acrylate copolymer–porous substrate composite membrane by pervaporation was investigated. Poly(n‐butyl acrylate‐co‐acrylic acid) and poly(n‐butyl acrylate‐co‐2‐hydroxyethyl acrylate) were synthesized and composite membranes were prepared, which were made from the crosslinked polymer and a porous substrate. Pervaporation measurement was carried out for a dilute aqueous solution of 1,1,2‐trichloroethane at 25°C and under a vacuum on the permeate side (below 10 mmHg). The separation factor, overall flux, 1,1,2‐trichloroethane concentration in the membrane, and the degree of swelling decreased with increase in the acrylic acid or 2‐hydroxyethyl acrylate content of the acrylate copolymer. The influence of the crosslinking agent content on the pervaporation performance was small, and the separation factor and the overall flux showed a convex curve. The structure of the crosslinking agent had no effect on the separation. The influence of the pore size of the substrate and the thickness of the polymer layer on the separation of 1,1,2‐trichloroethane was observed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 983–994, 1999  相似文献   

18.
The intermolecular hydrogen bonding interactions between poly(3‐hydroxybutyrate) and poly(styrene‐co‐vinyl phenol) copolymers with mutual solvent epichlorohydrin were thoroughly investigated by steady‐state fluorescence and viscosity techniques. Fluorescence spectroscopy along with viscosity technique was used to asses the intermolecular hydrogen bonding between poly‐(3‐hydroxybutyrate) and its blends with five copolymer samples of styrene–vinyl phenol, containing different proportions of vinyl phenol but similar average molecular weight and polydispersity index. In the case of very low OH contents (2–4 mol %), as expected, both components of poly(3‐hydroxybutyrate) and poly(styrene‐co‐4‐vinylphenol) chains are well separated and remain so independently of the mixed polymer ratio and overall polymer concentration as well. Conversely, when the OH content reaches 5.8 mol % or more, a significant decrease of the intrinsic fluorescence intensity emitted by the copolymer is detected upon addition of aliquots of poly(3‐hydroxybutyrate). In these cases, an average value for the interassociation equilibrium constant, KA = 8.7, was obtained using a binding model formalism. A good agreement of these results with those obtained from complementary viscosity measurements, through the interaction parameter, Δb, was found. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 900–910, 2006  相似文献   

19.
The aim of the study was to investigate the synthesis of a copolymer bearing cyclic carbonate and its miscibility with styrene/acrylonitrile copolymer (SAN) or poly(vinyl chloride) (PVC). (2‐Oxo‐1,3‐dioxolan‐4‐yl)methyl vinyl ether (OVE) as a monomer was synthesized from glycidyl vinyl ether and CO2 using quaternary ammonium chloride salts as catalysts. The highest reaction rate was observed when tetraoctylammonium chloride (TOAC) was used as a catalyst. Even at the atmospheric pressure of CO2, the yield of OVE using TOAC was above 80% after 6 h of reaction at 80°C. The copolymer of OVE and N‐phenylmaleimide (NPM) was prepared by radical copolymerization and was characterized by FTIR and 1H‐NMR spectroscopies and differential scanning calorimetry (DSC). The monomer reactivity ratios were given as r1 (OVE) = 0.53–0.57 and r2 (NPM) = 2.23–2.24 in the copolymerization of OVE and NPM. The films of poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were cast from N‐dimethylformamide. An optical clarity test and DSC analysis showed that poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were both miscible over the whole composition range. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1809–1815, 2000  相似文献   

20.
Acrylamide (AAm) solid state polymerization was induced using argon plasma to improve the pervaporation performance of poly(tetrafluoroethylene) (PTFE) membranes (PTFE‐g‐PAAm) in aqueous alcohol mixtures. The surface morphology, chemical composition, and hydrophilicity changes in the PTFE and PTFE‐g‐PAAm membranes were investigated using ATR‐FTIR, SEM, AFM, X‐ray photoelectron spectroscopy, and water contact angle measurements. The surface hydrophilicity rapidly increased with increasing Ar exposure time, but decreased after longer Ar exposure time because of the degradation in the PTFE‐g‐PAAm membrane grafted layer. Compared with the hydrophilicity of the pristine PTFE membrane (water contact angle = 120°), the argon plasma induced acrylamide (AAm) solid‐state polymerization onto the PTFE surface (water contact angle = 43.3°) and effectively improved the hydrophilicity of the PTFE membrane. This value increases slowly with increasing aging time and then reaches a plateau value of about 50° after 10 days of storage under air. The pervaporation separation performances of the PTFE‐g‐PAAm membranes were higher than that of the pristine PTFE membrane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:909–919, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号