首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carboxylic functionalized poly(methyl methacrylate-co-butyl acrylate) particles were synthesized by soap free emulsion polymerization using sodium salts of itaconic acid and acrylic acid. Transition behaviors of these latexes in terms of glass transition of matrix and cluster were found to be completely different from those synthesized by solution polymerization. This disparity was attributed to the difference between co-monomers sequence distribution along the chains. Distribution of functional groups in the latexes was determined by conductometric titration. Film formation process of the latexes was also examined and interpreted based on the density of surface functional groups, transition behaviors, and particle size. AFM images revealed that, as the amount of these ionic co-monomers increases, more ordered films are obtained, while the particle inter-diffusion is greatly retarded. A dimensionless parameter indicating relative roughness of the films further supported the aforementioned findings.  相似文献   

2.
Different poly(methyl methacrylate/n‐butyl acrylate)/poly(n‐butyl acrylate/methyl methacrylate) [P(BA/MMA)/P(MMA/BA)] and poly(n‐butyl acrylate/methyl methacrylate)/polystyrene [P(BA/MMA)/PSt] core‐shell structured latexes were prepared by emulsifier‐free emulsion polymerization in the presence of hydrophilic monomer 3‐allyloxy‐2‐hydroxyl‐propanesulfonic salt (AHPS). The particle morphologies of the final latexes and dynamic mechanical properties of the copolymers from final latexes were investigated in detail. With the addition of AHPS, a latex of stable and high‐solid content (60 wt %) was prepared. The diameters of the latex particles are ~0.26 μm for the P(BA/MMA)/P(MMA/BA) system and 0.22–0.24 μm for the P(BA/MMA)/PSt system. All copolymers from the final latexes are two‐phase structure polymers, shown as two glass transition temperatures (Tgs) on dynamic mechanical analysis spectra. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3078–3084, 2002  相似文献   

3.
In this study, we propose an efficient method for preparation of large scale, monodisperse poly(methyl methacrylate‐co‐butyl acrylate) latexes by application of the low power ultrasound irradiation. The effect of polymerization temperature and initiator concentration on the polymerization nature, particle size, and particle size distribution were investigated. Results indicated that the ultrasound pulses in the first minutes of polymerization increase instant free radical to monomer ratio as well mixing efficiency which led to higher monomer conversion, improved polymerization rate (especially at first 15 min of the reaction), and remarkable decrease in molecular weight distribution. Transmittance electron microscopy (TEM) and dynamic light scattering (DLS) revealed that the particle size and particle size distribution were significantly affected, particle size decreased, and more uniform particles were obtained. Dynamic mechanical thermal analysis also showed that the initiator concentration affected glass transition temperature (Tg) of the final copolymers and in the case of ultrasound‐assisted emulsion polymerization Tg was in a very good agreement with theoretical predictions for copolymerization. POLYM. ENG. SCI., 56:214–221, 2016. © 2015 Society of Plastics Engineers  相似文献   

4.
Stable and high solid content (about 50 wt%) St/BA emulsifier-free latexes were successfully synthesized using emulsifier-free emulsion polymerization with the addition of a small amount of reactive emulsifier AMPS. Properties of the latexes, such as the average particle diameter and its distribution, the morphology of latex particles, and stability were investigated. Physical properties of the latex films, i.e., glass transition temperature (T g), water resistance, and solvent resistance were investigated as well. The size of latex particles is 400–600 nm in diameter, which is larger than that prepared by conventional emulsion polymerization. And the particle size distribution is narrow and uniform. It was found that the diameter of the latex particles decreases with the increasing content of the initiator KPS and the reactive emulsifier AMPS. Compared with the film prepared by conventional emulsion polymerization, water resistant and solvent resistant of the films prepared by emulsifier-free emulsion polymerization are improved greatly.  相似文献   

5.
The design of a semicontinuous emulsion polymerization process, primarily based on theoretical calculations, has been carried out with the objective of achieving overall independent control over the latex particle size, the monodispersity in the particle size distribution, the homogeneous copolymer composition, the concentration of functional groups (e.g., carboxyl groups), and the glass‐transition temperature with n‐butyl methacrylate/n‐butyl acrylate/methacrylic acid as a model system. The surfactant coverage on the latex particles is very important for maintaining a constant particle number throughout the feed process, and this results in the formation of monodisperse latex particles. A model has been set up to calculate the surfactant coverage from the monomer feed rate, surfactant feed rate, desired solid content, and particle size. This model also leads to an equation correlating the polymerization rate to the instantaneous conversion of the monomer or comonomer mixture. This equation can be used to determine the maximum polymerization rate, only below or at which monomer‐starved conditions can be achieved. The maximum polymerization rate provides guidance for selecting the monomer feed rate in the semicontinuous emulsion polymerization process. The glass‐transition temperature of the resulting carboxylated poly(n‐butyl methacrylate‐con‐butyl acrylate) copolymer can be adjusted through variations in the compositions of the copolymers with the linear Pochan equation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 30–41, 2003  相似文献   

6.
Carboxylated styrene–butadiene rubber latexes were prepared through the emulsifier‐free emulsion copolymerization of styrene and butadiene with various carboxylic acid monomers. The effects of various carboxylic acid monomers on the particle formation process were investigated. The type of carboxylic acid monomer strongly affected the particle nucleation. The number of particles and thus the polymerization rate increased with the increasing hydrophobicity of the carboxylic acid monomers. There was a significant difference in the polymerization rate per particle. The results showed that particle nucleation and growth were dependent on the hydrophilic nature of the carboxylic acid monomers. The average particle diameter of the carboxylated styrene–butadiene rubber latexes in the dry state was obtained through some calculations using direct measurements of the average particle diameter in the monomer‐swollen state by a dynamic light scattering technique. Several parameters, such as the polymerization rate, number of latex particles per unit of volume of the aqueous phase, and polymerization rate per particle, were calculated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

7.
Vinylidene chloride (VDC)—butyl methacrylate (BMA) comonomer mixtures with various composition (83 : 17, 60 : 40, 33 : 67 in mol %) were polymerized at 25°C using redox catalyst by batch and seeded semicontinuous emulsion copolymerization. The reactivity ratios determined in VDC (M1)—BMA (M2) emulsion copolymerization system were r1 = 0.22 and r2 = 2.41. Seven 35% solids (83 : 17 mol %) VDC–BMA copolymer latexes were prepared: one batch (G), one seeded batch (F), and 5 seeded semicontinuous polymerizations of 5 different monomer feed rates ranging from 0.27 (A) to 1.10 wt %/min (E). The kinetic studies of seeded semicontinuous polymerizations A-E showed that the rates of polymerizations (Rp) were controlled by the monomer addition rates (Ra). The conversion versus time curves for the polymerizations of 0 : 100–100 : 0 VDC–BMA mixtures by batch polymerization showed that the rate of polymerization (Rp) was a function of the number of particles, and that the rate of polymerization in a latex particle (Rpp) increased with increasing proportions of butyl methacrylate in the monomer mixture. All of the latexes had narrow particle size distributions. The greater particle number density in VDC polymerization and the greater water solubility of VDC suggest that the homogeneous nucleation mechanism is operative in VDC–BMA copolymerizations. The latex copolymers prepared by semicontinuous polymerization had lower number-and weight-average molecular weights than those of the corresponding batch copolymers, resulting from the monomer starvation occurring during the semicontinuous polymerization. The surface characterization study of the cleaned latexes showed that for the latexes by batch process, the surface charge density derived from strong-acid groups decreased with increasing proportion of VDC in the monomer mixture. On the other hand, for the latexes prepared by semicontinuous polymerization, the surface charge density derived from strong-acid groups did not depend on the monomer composition of the copolymers.  相似文献   

8.
A series of poly(styrene‐co‐methacryloxyethylhexadecyldimethyl ammonium bromide), P(St‐DMHB), cationic particles were prepared by emulsion polymerization using 2,2′‐azobis(2‐methylpropionamide) dihydrochloride as the initiator with different levels of DMHB as the cationic functional comonomer. ζ potential, particle size, and size distribution of the particles were determined. Large discrepancy was observed between the particle size from dynamic light scattering and that from transmission electron microscopy. Results showed that particle size and ζ potentials were closely dependant on DMHB level used. A flocculation process for the cationic latex was established, and a method to estimate DMHB conversion was proposed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
The effects of particle size and parent polymer characteristics on the mechanical properties, gel fraction, and swelling index of self‐crosslinkable poly(n‐butyl methacrylate‐co‐N‐methylolacrylamide) films made by two‐stage emulsion or microemulsion polymerization in the presence of variable amounts of the chain transfer agent, n‐butyl mercaptan, are reported here. In films prepared with latexes made by microemulsion polymerization, the crosslinking degree increased greatly on curing; by contrast, in those made by emulsion polymerization, the crosslinking degree practically did not increase after curing. Stress–strain tests of uncured and cured films indicate that microemulsion‐made films are tougher than the emulsion‐made films. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Poly(vinyl acetate-co-butyl acrylate) latexes having oligomeric N-methylol acrylamide were prepared by semi-continuous emulsion polymerization. The effects of new protective colloid and comonomer ratios on the physicochemical and colloidal properties of latexes were investigated. The changes in homopolymer and copolymer latexes were determined by measuring viscosity, particle size, molecular weight (MW), molecular weight distribution (MWD), and surface tension. [`(M)]n \bar{M}_{n} values of copolymer latexes were found to be lower than the MWs of the poly(vinyl acetate) and poly(butyl acrylate) homopolymers. In general, [`(M)]n \bar{M}_{n} and [`(M)]\textw \bar{M}_{\text{w}} values of copolymer latexes changed irregularly with increasing BuA ratio in the copolymer composition.  相似文献   

11.
An acrylate‐functional soybean oil‐based macromonomer (SoyAA‐1) was synthesized in high yields utilizing sequential amidation and acrylation processes to serve as an internal plasticizer in emulsion polymers. The structure and structure–property relationships of this unique macromonomer were validated with FTIR, NMR, and LC‐MS. The viability of SoyAA‐1 as a comonomer in emulsion polymerization was established via copolymerization with methyl methacrylate (MMA) at varying copolymer weight compositions. The effect of increasing SoyAA‐1 levels and concomitantly higher allylic functionality was measured through film coalescence, minimum film forming temperature, and initial and progressively increasing glass transition temperature(s). The results indicate that synthetic modification of a renewable resource, soybean oil, can yield a valuable monomer that can be copolymerized in high yields via emulsion polymerization to produce practical and mechanically stable latexes for a variety of coatings applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40249.  相似文献   

12.
A modified emulsifier‐free emulsion polymerization of butyl methacrylate (BMA) with ionic or/and nonionic comonomers was successfully used to prepare nanosized poly(butyl methacrylate) (PBMA) latices with high polymer contents. After seeding particles were generated in an initial emulsion system, consisting of a portion of BMA, water, ionic comonomer [sodium styrenesulfonate (NaSS)] or nonionic comonomer [2‐hydroxyethyl methacrylate (HEMA)] and potassium persulfate, most of the BMA monomer or the mixture of BMA and HEMA was added dropwise to the polymerizing emulsion over a period of 6–12 h. Stable latices with high PBMA contents up to 27% were obtained. It was found that the latex particle sizes (2Rh) were largely reduced (34 nm) by the continuous addition of monomer(s) compared to those (107 nm) obtained by the batch polymerization method. The effect of comonomer concentration on the particle size, the number of PBMA particles/mL of latex (Nd), and the molar mass (Mw) of copolymer during the polymerization were discussed. The surface compositions of latex particles were analyzed by X‐ray photoelectron spectroscopy, indicating that the surface of latex particles was significantly enriched in NaSS or/and HEMA. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3080–3087, 2004  相似文献   

13.
Monodispersed noncarboxylated and carboxylated poly(n‐butyl methacrylate‐con‐butyl acrylate) latices were synthesized with a well‐defined semicontinuous emulsion polymerization process. A modified theory to correlate the polymerization rate to the instantaneous conversion of the monomer or comonomer mixture was developed. The resulting equation was used to determine the maximum polymerization rate only below or equal to which the polymerization could be operated in the highly monomer‐starved regime, which corresponded to an instantaneous conversion of 90% or greater. Experimental data from reaction calorimetry supported that the polymerization was under highly monomer‐starved conditions when the model latices were synthesized with the modified model. The estimation of the average number of free radicals per latex particle(n?) during the feeding stage revealed that n? was as high as 1.4 in the actual polymerization, which showed that the original selection of 0.5 as the n? value was not accurate in the developed model. From the conductimetric titration experiments, we found that most of the carboxyl groups from the methacrylic acid (MAA) were buried inside the latex particles, and the surface carboxyl group coverage increased as the MAA concentration in the comonomer feed increased. The glass‐transition temperatures of the synthesized polymers were close to the designed value from the Pochan equation, and only one glass transition was observed in the polymer samples in the differential scanning calorimetry measurements, indicating a homogeneous copolymer composition in the functionalized shell. Particle size characterization and transmission electron microscopy confirmed the uniformity in the latex particle size. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 248–256, 2005  相似文献   

14.
BA‐MMA‐POMA copolymer latex was successfully prepared by soap‐free emulsion polymerization of 2‐(perfluoro‐(1,1‐bisisopropyl)‐2‐propenyl)oxyethyl methacrylate(POMA) with butyl acrylate(BA), methyl methacrylate (MMA) initiated by K2S2O8 in the water. POMA was synthesized from the intermediate perfluoro nonene and 2‐hydroxyethyl methacrylate as the staring reactants. The structure of BA‐MMA‐POMA copolymer latex was investigated by Fourier transform infrared (FTIR). The characteristics of the film such as hydrophobicity and glass transition temperature were characterized with the contact angle and differential scanning calorimetry respectively. The influences of the amount of the fluorinated monomer and the initiator on the soap‐free emulsion polymerization and performance of the latex were studied. In addition, comparison with the latex prepared by the conventional emulsifier SDBS is investigated. Results show that the hydrophobicity and glass transition temperature (Tg) of the latex are increased when the fluorinated monomer is introduced to copolymerize with other monomers. The hydrophobicity can be improved further with heating. Compared with the latices prepared by using SDBS emulsifier, the latices prepared by using HMPS emulsifier have larger particle size, higher surface tension. However, the difference of their Tg is extremely minute. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Functional emulsifier‐free cationic latexes based on styrenic monomer vinylbenzyl chloride (VBC) and acrylic monomer 2‐(dimethylamino)ethyl methacrylate (DMA) were successfully prepared with dual quaternary ammonium ions (36–63 mol %) on both monomer moieties in two‐stages. First, [2‐(methacryloyloxy)ethyl]dimethylhexadecylammonium bromide monomer (DMA(C16)), prepared via quaternization of DMA with 1‐bromohexadecane, was utilized as a comonomer (5–20%) as well as a surfactant in the emulsion polymerization of VBC. Next, the quaternization of chloromethyl groups in the VBC moiety in latex particles with trimethylamine and N,N‐dimethylhexadecylamine created a second type of quaternized sites on the latex particles. The percentages of the quaternary ammonium ions of the first‐stage latexes (P[VBC‐DMA(C16‐x)]) and the second‐stage latexes (P[VBC(R)‐DMA(C16‐x)]) were determined using bromide and chloride ion‐selective electrodes. The particles were characterized with a scanning electron microscope, Zetasizer, measuring water contact angles of their pellets. The polymer structure and the alkyl group length in their quaternary ammonium ions played an important role on the sizes, zeta potentials and hydrophilic–hydrophobic balances of the latexes. The water contact angles of the pellets of the latex particles varied from 50.3 to 109.6° depending on both the polymer structure and the alkyl group length. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42775.  相似文献   

16.
An inverse free‐radical emulsion polymerization technique was used to prepare copolymers of acrylamide and two different hydrophobic comonomers: N,N‐dihexylacrylamide (diC6) or N,N‐diphenylacrylamide (diPh). The products of the reaction were high molecular weight hydrophobically modified water‐soluble polymers (HMWSPs) encapsulated within water droplets dispersed in an organic medium. A comparison of the copolymer compositions prepared under different experimental conditions showed that the level of incorporation of diPh in the final copolymer depended strongly on its localization in the emulsion (aqueous or oil phase) and on the nature of the redox initiator pair (water‐soluble or oil‐soluble). The rheological properties of the HMWSPs in aqueous solution were investigated as a function of the comonomer content and the nature of the initiator, using steady‐flow experiments. The thickening properties were found to be directly correlated to the conditions of synthesis and were optimal when the initiator and the hydrophobic comonomer were located in two distinct phases. An examination of the viscosity as a function of shear rate showed that these solutions exhibit typical characteristics of hydrophobically associative polymers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 916–924, 2004  相似文献   

17.
The preparation of imidazole‐functionalized latex microspheres by a two‐stage emulsion copolymerization process and their characterization are reported on. Emulsifier‐free emulsion copolymerization of styrene (St) and 1‐vinyl imidazole (VIMZ) exhibited bimodal particle size distributions caused by secondary homogeneous nucleation process. However, secondary nucleation can be avoided by using cetyltrimethylammonium bromide (CTAB) as a stabilizer at a concentration below its cmc (critical micelle concentration). This would result in the formation of monodisperse latex particles. The final particle size diameter depended on the concentration of CTAB as well as the amount of VIMZ. To control the amount of the functional imidazole groups on the latex particle surfaces, independent of the latex diameters, without secondary nucleation of particles, the seeded emulsion copolymerization of styrene and VIMZ was explored as a second‐stage polymerization at different concentrations and ratios of monomers in the presence of the previously prepared monodisperse poly(styrene‐co‐1‐vinyl imidazole) seed latex particles. The concentration of imidazole functional groups on the surface of the latex particles could also be varied through the rearrangement of hydrophilic imidazole groups by varying the second‐stage monomer addition process such as the utilization of monomer‐swollen seed particles or a shot addition of monomers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 120:5753–5762, 2006  相似文献   

18.
Summary Stable organosilicon-acrylate copolymer latexes with high silicon content were prepared by seeded semibatch emulsion polymerization of butyl acrylate (BA), methyl methacrylate (MMA) with a novel branched organosilicon monomer 3-methacryloxypropyl tris(trimethylsiloxy) silane (MPTS). Monomer conversion, evolution of the particle size and its distribution were monitored by dynamic light scattering. The effects of MPTS on the polymerization kinetics, the nucleation mechanism and properties of latex were investigated. The results indicated that, in addition to micellar nucleation, a coagulative nucleation step was also observed as a result of the addition of the organosilicon monomer, accordingly, the particle number of the silicon-acrylate latexes increased, the average particle diameter decreased and the polymerization rate accordingly increased compared to those of the acrylate latexes without organosilicon monomer. Moreover, the particle size distribution presented bimodal curves, which indicated that there were large particles formed at an early stage. However, the particle size distribution curves became monomodal at the later stage, and the final latex shows a narrow particle size distribution. It was found that the properties of latex and latex film were obviously influenced by MPTS content. With increasing MPTS content, latex film glass transition temperature and water absorption ratio decreased, the degradation temperature and water contact angle were increased. Hence, the resulting latex films containing MPTS showed lower glass transition temperature and excellent water-resistance, which probably due to the incorporation of the bulky branched hydrophobic group of MPTS into the copolymer chains.  相似文献   

19.
The effect of reducing the molar mass of the shell layer of core–shell latex particles on film-forming and final coating properties of self-crosslinking latexes was investigated. Latex particles were prepared by the semi-continuous non-seeded emulsion polymerization of methyl methacrylate, butyl acrylate and methacrylic acid as main monomers. The particle core was slightly cross-linked (using a constant amount of allyl methacrylate as a comonomer) to prevent the copolymers forming the core phase from migration into the shell phase. For interfacial cross-linking, diacetone acrylamide was copolymerized into the shell layer of latex particles to provide sites for subsequent reaction with adipic acid dihydrazide. The molar mass of copolymers forming the shell layer was systematically varied by isooctyl 3-mercaptopropionate chain transfer agent included in the synthesis of each of the shell layers and the molar mass distribution was determined using size exclusion chromatography coupled with a multi-angle light scattering detection. Fundamental properties of latexes and cast films were systematically compared. These properties included minimum film-forming temperature, pendulum hardness, adhesion, impact resistance, stress–strain properties as well as the characterization of water absorption. The results confirmed theoretical predictions and described empirically the effects of reducing the molar mass of the shell layer copolymer on final properties of coating films.  相似文献   

20.
An ionic polymerizable surfactant, sodium sulfopropyl‐laurylmaleate (M12), was synthesized and used as an emulsifier, an initiator, and a comonomer in ultrasonically irradiated emulsion polymerization. FTIR spectra and gravimetric method results indicated that copolymers P(Styrene‐M12) and P(Butylacrlate‐M12) were prepared successfully by ultrasonically irradiated emulsion polymerization and the composition of M12 elevated with the increasing concentration of M12 added. TEM photographs of P(St‐M12) showed that the nanoparticles with small diameters (20–45 nm) were prepared. With the increase of M12 concentration, the particle size became smaller and the size distribution became wider. The P(BA‐M12) particles size was also small (<100 nm) but the size distribution was wide due to the high reactivity of BA. Because surfmer M12 was chemically bonded with the latex particles, the stability of the copolymer latex prepared by ultrasonically irradiated emulsion polymerization was much better than that of the homopolymer latex (PSt or PBA) prepared by the same way. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号