首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
钛基材料中最具代表性的H_2Ti_(12)O_(25)负极材料因其循环性能好,能量密度高引起了人们的广泛关注,采用聚苯胺原位包覆的方法进一步提高材料的电化学性能。结果表明,导电聚苯胺包覆后的材料比未包覆材料H_2Ti_(12)O_(25)具有更高的容量和更好的倍率性能。当包覆量为2%时,样品循环100周后的放电比容量为145.9mA·h·g~(-1),容量保持率为94.2%,而未包覆样品为109 mA·h·g~(-1),容量保持率为92.3%。  相似文献   

2.
本文以燃烧法制备LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2基体,通过机械球磨得到石墨烯修饰的正极材料。用扫描电镜(SEM)、X射线衍射(XRD)、电池测试和电化学工作站表征了材料的晶体结构和电化学性能。结果表明,石墨烯的修饰显著提高了Li Ni_(0.6)Co_(0.2)Mn_(0.2)O_2的容量和循环稳定性:经200℃热处理、1%石墨烯修饰后的样品在3.0~4.3 V、0.1C倍率下首次放电比容量达到170.8 mA·h·g~(-1),比基体材料提高了12 mA·h·g~(-1);1C下循环100周后容量保持率分别为91.1%,比基体提高了6.9%。  相似文献   

3.
以5 V高电压LiNi_(0.5)Mn_(1.5)O_4为正极材料,高安全性Li_4Ti_5O_(12)为负极材料制备了LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)全电池,重点研究了正负极容量配比对电池电化学性能的影响。其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 m Ah·g~(-1),循环200次的容量保持率为88%;在2 C电流下,P/N=1.4的电池的最高放电比容量为135.2 m Ah·g~(-1),循环740次的容量保持率为91.1%。P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关。  相似文献   

4.
采用聚苯胺-聚乙二醇(PANI-PEG)双导电聚合物对Li_(1.17)Mn_(0.50)Ni_(0.16)Co_(0.17)O_2正极材料进行表面改性。利用XRD、SEM、TEM测试手段对包覆前后样品的晶体结构和表面形貌进行了表征,并对其电化学性能进行了系统研究。其中3%(wt)的PANI-PEG改性的Li_(1.17)Mn_(0.50)Ni_(0.16)Co_(0.17)O_2正极材料表现出最佳的初始库伦效率(83.0%),最高的放电比容量(100圈后192.0 mA·h·g~(-1)/1C)和最高的倍率性能(130 mA·h·g~(-1)/5C)。  相似文献   

5.
以Zr(NO_3)_4·5H_2O和CH_3COOLi·2H2_O为原料,采用湿化学法,将Li_2ZrO_3包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2锂离子电池正极材料的表面,研究Li_2ZrO_3不同包覆比例对LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2电化学性能的影响。SEM、TEM、EDS谱图分析表明,Li_2ZrO_3层均匀地包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2表面,其厚度约为8 nm。与纯相相比,1%(质量分数)Li_2ZrO_3包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2复合材料在1.0 C下首次放电比容量为184.7 mA·h·g~(-1)、100次循环之后放电比容量为169.5 mA·h·g~(-1),其容量保持率达到91.77%,表现出良好的循环稳定性。循环伏安(CV)和电化学阻抗(EIS)测试结果表明,Li_2ZrO_3包覆层抑制了正极材料与电解液之间的副反应,减小了材料在循环过程中的电荷转移阻抗,从而提高了材料的电化学性能。  相似文献   

6.
以锐钛矿TiO_2为钛源,LiAc为锂源,采用高温固相法制备Li_4Ti_5O_(12)负极材料,考察了不同纳米粒径的TiO_2对Li_4Ti_5O_(12)电化学性能的影响。X射线衍射仪(XRD)和扫描电子显微镜(SEM)分析表明,合成的样品为结晶度高的纳米级尖晶石结构的Li_4Ti_5O_(12)。0.2C倍率的充放电结果表明,LTO_(60)性能最好,首次放电容量为178.82mAh·g~(-1),100次循环后容量保持率高达97.39%。  相似文献   

7.
以Li_2CO_3、TiO_2、Ni(CH_3COO)_2×4H_2O为原料,采用固相法制备尖晶石型Li_4Ti_(4.9)Ni_(0.1)O_(12)锂离子负极材料。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试以及交流阻抗等技术对材料进行了结构、形貌表征及电化学性能测试。结果表明,制备的Li_4Ti_(4.9)Ni_(0.1)O_(12)材料无杂相,颗粒大小均匀,在0.5 C下首次放电比容量为173.3 mA×h/g,库伦效率为97.4%,50次循环后,材料的放电比容量为163.4 mA×h/g,容量保持率为94.3%。  相似文献   

8.
针对SnO2用作锂离子电池负极材料所存在的体积膨胀率高及导电性差的不足,考察了羧甲基纤维素钠(CMC)/丁苯橡胶(SBR)和聚偏氟乙烯(PVDF)黏结剂对SnO2、SnO2/石墨烯负极材料电化学性能的影响。结果表明:1)200 mA/g下经过30次充放电循环后,当以CMC/SBR作复合黏结剂时,SnO2的首次放电容量和容量保持率分别为581.3 mA·h/g和37.6%,明显高于PVDF作黏结剂时的电化学性能(135.3 mA·h/g、10.6%);2)200 mA/g下经过100次循环后,当以CMC/SBR作复合黏结剂时,SnO2/石墨烯复合负极材料的首次放电容量、容量保持率分别为702.3 mA·h/g和43.8%,也高于PVDF作黏结剂时的电化学性能(552 mA·h/g和32.8%)。  相似文献   

9.
以葡萄糖为碳源,以Li_2CO_3、TiO_2为原料,采用原位复合法制得不同碳质量分数的锂离子电池复合负极材料Li_4Ti_5O_(12)-C。通过X射线衍射和扫描电子显微镜对复合材料的结构及表面形貌进行了表征,采用恒流充放电和电化学阻抗等技术对复合材料进行电化学性能测试。结果表明:Li_4Ti_5O_(12)-C没有杂相,颗粒均匀。其中,碳质量分数为3%的复合材料在0.5 C下的首次放电比容量最高,为185.9 mA·h/g,循环50次后,其放电比容量仍为161.5 mA·h/g,容量保持率为86.9%;在4.0 C下,其首次放电比容量为106.9mA·h/g。与其他样品相比,碳质量分数为3%的复合材料循环伏安氧化还原峰电位相差为278.6 mV,溶液阻抗为6.198?,电荷转移电阻为187.2?,电化学性能最好。  相似文献   

10.
采用共沉淀-高温固相合成法制备锂离子电池正极材料Li_(1.2)Ni_(0.2-x/2)Mn_(0.6-x/2)Cr_xO_2(x=0,0.04,0.08,0.12)。利用X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试和电化学交流阻抗谱(EIS)对掺杂不同Cr含量的正极材料的结构、形貌和电化学性能进行分析测试。结果表明:制备出的Li_(1.2)Ni_(0.2-x/2)Mn_(0.6-x/2)Cr_xO_2正极材料均具备层状固溶体结构。Cr掺杂不会改变材料的结构,而且能够有效抑制循环过程中材料由层状向尖晶石结构转变的过程。当Cr的掺杂量为8%(即x=0.08)时,得到的正极材料Li_(1.2)Ni_(0.16)Mn_(0.56)Cr_(0.08)O_2具有最好的电化学性能。0.1C的首次放电比容量由未掺杂的230.4 mA·h·g~(-1)增加到246.6 mA·h·g~(-1),在0.2C电流下50次循环后的容量保持率由93.5%提高至95.36%,5C的放电比容量由91.5 mA·h·g~(-1)增加到104.2 mA·h·g~(-1)。而且x=0.08时制备的样品具有最小的电荷转移阻抗。  相似文献   

11.
采用微波共沉淀法合成了制备LiNi0.8Co0.2O2的前驱体球形α-Ni0.8Co0.2(OH)2,将其与LiOH·H2O混合,在氧气氛围下,用不同的烧结温度分别烧结10小时获得LiNi0.8Co0.2O2正极材料。用XRD、SEM对所制备的正极材料进行结构和形貌分析,用恒流充放电测试材料的电化学性能。结果表明,烧结温度对材料结构和电化学性能影响较大,所合成材料均具有α-NaFeO2的层状结构,烧结温度越高材料结晶越完善。900℃烧结的LiNi0.8Co0.2O2材料初级颗粒结晶最完善而且其二次团聚粒子的平均粒径最小,其表现出的电化学性能也最好,首次放电容量为189.1mA·h·g-1,首次循环放电效率达到92.5%。30循环后放电容量保持在148 mA·h·g-1,显示出较好的循环稳定性。  相似文献   

12.
Mesoporous TiO2-B/anatase microparticles have been in-situ synthesized from K2Ti2O5 without template. The TiO2-B phase around the particle surface accelerates the diffusion of charges through the interface, while the anatase phase in the core maintains the capacity stability. The heterojunction interface between the main polymorph of anatase and the trace of TiO2-B exhibits promising lithium ion battery performance. This trace of 5%(by mass) TiO2-B determined by Raman spectra brings the first discharge capacity of this material to 247 mA·h·g?1, giving 20%improvement com-pared to the anatase counterpart. Stability testing at 1 C reveals that the capacity maintains at 171 mA·h·g?1, which is better than 162 mA·h·g?1 for single phase anatase or 159 mA·h·g?1 for TiO2-B. The mesoporous TiO2-B/anatase microparticles also show superior rate performance with 100 mA·h·g?1 at 40 C, increased by nearly 25%as compared to pure anatase. This opens a possibility of a general design route, which can be applied to other metal oxide electrode materials for rechargeable batteries and supercapacitors.  相似文献   

13.
赵曦  田艳红  张学军  陈永 《化工学报》2015,66(5):1989-1995
针对Li4Ti5O12导电性和倍率性能差的缺陷,以PEG为碳源采用溶胶-凝胶法制备出电池负极材料Li4Ti5O12/C,考察不同分子量聚乙二醇PEG(400、600、1000)做碳源制备的Li4Ti5O12/C复合材料电化学性能的优劣,采用热重分析仪(TG)、X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒流充放电、倍率放电、交流阻抗(EIS)等方法对材料进行了结构表征和电化学性能测试。结果表明:以PEG1000为碳源时得到的Li4Ti5O12/C,0.1C下首次放电比容量为143.5 mA·h·g-1,2C的倍率下仍然保持了105 mA·h·g-1的比容量,容量保持率达到73.17%,并且此材料有最小的电阻,在大电流条件下有良好的电化学性能。  相似文献   

14.
以醋酸锂、磷酸、七水合硫酸亚铁为原料,聚乙二醇为分散剂,通过一步水热法制备得到中空八面体LiFePO_4锂离子电池正极材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试仪对样品晶型、形电化学性能进行了表征测试。研究结果表明,在2.5~4.2 V电压范围内,以0.1 C(17 mA/g)倍率进行充放电,样品首次放电比容量为129.6 mA·h/g;0.2、0.5、1、2和5 C的充放电倍率时,首次放电比容量分别达到123.6、119.7、114.1、99.5g和90.6 mA·h/g。10 C的充放电倍率时首次放电比容量为84.3 mA·h/g,说明中空八面体LiFePO_4在高倍率下表现出优异的电化学性能。  相似文献   

15.
TiO2 microspheres containing carbon have been synthesized viaa one-pot hydrothermal process using CTAB as the mesoporous template and nanoparticle stabilizer and Ti(SO4)2 and sucrose as titanium and ca...  相似文献   

16.
Two-dimensional (2D) titanium carbide MXene Ti3C2 has attracted significant research interest in energy storage applications. In this study, we prepared Chl@Ti3C2 composites by simply mixing a chlorophyll derivative (e.g., zinc methyl 3-devinyl-3-hydroxymethyl- pyropheophorbide a (Chl)) and Ti3C2 in tetrahydrofuran, where the Chl molecules were aggregated among the multi-layered Ti3C2 MXene or on its surface, increasing the interlayer space of Ti3C2. The as-prepared Chl@Ti3C2 was employed as the anode material in the lithium-ion battery (LIB) with lithium metal as the cathode. The resulting LIB exhibited a higher reversible capacity and longer cycle performance than those of LIB based on pure Ti3C2, and its specific discharge capacity continuously increased along with the increasing number of cycles, which can be attributed to the gradual activation of Chl@Ti3C2 accompanied by the electrochemical reactions. The discharge capacity of 1 wt-% Chl@Ti3C2 was recorded to be 325 mA·h·g–1 at the current density of 50 mA·g–1 with a Coulombic efficiency of 56% and a reversible discharge capacity of 173 mA·h·g–1 at the current density of 500 mA·g–1 after 800 cycles. This work provides a novel strategy for improving the energy storage performance of 2D MXene materials by expanding the layer distance with organic dye aggregates.  相似文献   

17.
The irreversible consumption of sodium in the initial several cycles greatly led to the attenuation of capacity, which caused the low initial coulombic efficiency (ICE) and obvious poor cycle stability. Pre-sodiation can effectively improve the electrochemical performance by compensating the capacity loss in the initial cycle. Here, carbon-coated sodium-pretreated iron disulfide (NaFeS2@C) has been synthesized through conventional chemical method and used in sodium metal battery as a cathode material. The calculated density of states (DOS) of NaFeS2@C is higher, which implies enhanced electron mobility and improved cycle reversibility. Because of the highly reversible conversion reaction and the compensation of irreversible capacity loss during the initial cycle, the Na/NaFeS2@C battery achieves ultra-high initial coulombic efficiency (96.7%) and remarkable capacity (751 mA·h·g-1 at 0.1 A·g-1). In addition, highly reversible electrochemical reactions and ultra-thin NaF-rich solid electrolyte interphase (SEI) also benefit for the electrochemical performance, even at high current density of 100 A·g-1, it still exhibits a reversible capacity of 136 mA·h·g-1, and 343 mA·h·g-1 after 2500 cycles at 5.0 A·g-1. This work aims to bring up new insights to improve the ICE and stability of sodium metal batteries.  相似文献   

18.
In this paper,two carbon-coated lithium titanate(LTO-C1 and LTO-C2)composites were synthesized using the ball-milling-assisted calcination method with different carbon precursor addition processes.The physical and electrochemical properties of the as-synthesized negative electrode materials were characterized to investigate the effects of two carbon-coated LTO synthesis processes on the electrochemical performance of LTO.The results show that the LTO-C2 synthesized by using Li2CO3 and TiO2 as the raw materials and sucrose as the carbon source in a one-pot method has less polarization during lithium insertion and extraction,minimal charge transfer impedance value and the best electrochemical performance among all samples.At the current density of 300 mA·h·g-1,the LTO-C2 composite delivers a charge capacity of 126.9 mA·h·g-1,and the reversible capacity after 300 cycles exceeds 121.3 mA·h·g-1 in the voltage range of 1.0–3.0 V.Furthermore,the electrochemical impedance spectra show that LTO-C2 has higher electronic conductivity and lithium diffusion coefficient,which indicates the advantages in electrode kinetics over LTO and LTO-C1.The results clarify the best electrochemical properties of the carbon-coated LTO-C2 composite prepared by the one-pot method.  相似文献   

19.
LiNi0.5Mn1.5O4 and LiMn2O4 with novel spinel morphology were synthesized by a hydrothermal and post-calcination process. The synthesized LiMn2O4 particles (5-10 μm) are uniform hexahedron, while the LiNi0.5Mn1.5O4 has spindle-like morphology with the long axis 10-15 μm, short axis 5-8 μm. Both LiMn2O4 and LiNi0.5Mn1.5O4 show high capacity when used as cathode materials for Li-ion batteries. In the voltage range of 2.5-5.5 V at room temperature, the LiNi0.5Mn1.5O4 has a high discharge capacity of 135.04 mA·h·g-1 at 20 mA·g-1, which is close to 147 mA·h·g-1 (theoretical capacity of LiNi0.5Mn1.5O4). The discharge capacity of LiMn2O4 is 131.08 mA·h·g-1 at 20 mA·g-1. Moreover, the LiNi0.5Mn1.5O4 shows a higher capacity retention (76%) compared to that of LiMn2O4 (61%) after 50 cycles. The morphology and structure of LiMn2O4 and LiNi0.5Mn1.5O4 are well kept even after cycling as demonstrated by SEM and XRD on cycled LiMn2O4 and LiNi0.5Mn1.5O4 electrodes.  相似文献   

20.
Sodium-ion battery (SIB) is an ideal device that could replace lithium-ion battery (LIB) in grid-scale energy storage system for power because of the low cost and rich reserve of raw material. The key challenge lies in developing electrode materials enabling reversible Na+ insertion/desertion and fast reaction kinetics. Herein, a core-shell structure, FeS2 nanoparticles encapsulated in biphase TiO2 shell (FeS2@TiO2), is developed towards the improvement of sodium storage. The diphase TiO2 coating supplies abundant anatase/rutile interface and oxygen vacancies which will enhance the charge transfer, and avoid severe volume variation of FeS2 caused by the Na+ insertion. The FeS2 core will deliver high theoretical capacity through its conversion reaction mechanism. Consequently, the FeS2@TiO2 nanorods display notable performance as anode for SIBs including long-term cycling performance (637.8 mA·h·g-1 at 0.2 A·g-1 after 300 cycles, 374.9 mA·h·g-1 at 5.0 A·g-1 after 600 cycles) and outstanding rate capability (222.2 mA·h·g-1 at 10 A·g-1). Furthermore, the synthesized FeS2@TiO2 demonstrates significant pseudocapacitive behavior which accounts for 90.7% of the Na+ storage, and efficiently boosts the rate capability. This work provides a new pathway to fabricate anode material with an optimized structure and crystal phase for SIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号