首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了研究电渗透-过硫酸盐协同污泥深度脱水的机制,利用自制装置对市政污水处理厂的污泥进行了脱水研究,系统研究了在过硫酸铵投加量、电压梯度、污泥厚度和机械压力的操作条件下,污泥中胞外聚合物的组分(蛋白质和多糖)变化情况及对污泥脱水效果的影响。结果表明,在过硫酸铵投加量为30mg/gDS、电压为25V/cm、污泥厚度为2.0cm、机械压力为23.1kPa条件下,污泥含水率可以降低至57.4%。不同脱水条件均会造成胞外聚合物组分变化,其中过硫酸铵加量和电压是影响胞外聚合物组分以及污泥脱水效果的主要因素。  相似文献   

2.
This paper describes research that evaluated the influence of vacuum pressure, pH, and potential gradient on the vacuum electro-osmosis dewatering (VEOD) of drinking water treatment sludge (DWTS). In the first phase of the VEOD process, a vacuum pressure of ?0.05 MPa was applied alone to DWTS for 30 min, removing almost all free water and part of pore water. In phase two, electro-osmosis was applied in combination with intermittent vacuum filtration, further reducing pore water and surface adhesion water in DWTS. However, statistical analysis indicated that the optimum dewatering parameter values were vacuum pressure at ?0.06 MPa, pH at 6.2, and potential gradient at 2.5 V/cm, which resulted in a relevant energy consumption of 0.35 kW.h/kg removed water.  相似文献   

3.
4.
Experiments were carried out at the lab-scale to study the effect of a shearing action in a compression dewatering process. The impact of different process parameters, such as shear rate, filter-cake thickness, and pressure, on the final dry solid fraction was analyzed. Also, materials with different degrees of compressibility have been used. For slightly and moderately compressible materials (talc and kaolin, respectively), significantly higher final dry solid fractions (up to 0.79 wt/wt with talc and 0.75 wt/wt with kaolin) were obtained in the presence of a torsion shear. This behavior may mainly be explained by a rearrangement of the solid particles within the cake induced by the radial forces. A low shear rate (around 0.7 s?1) was generally sufficient to cause a quite significant increase in the cake dryness (a 12.8% increase was observed with 11-mm-thick talc cakes). A further increase in the shear did not lead to noticeable changes in the final dry solid fraction in the cakes. Otherwise, reducing the filter-cake thickness was beneficial for the dewatering. For talc cakes, the dry solid fraction was increased by 21% for a 3 mm thickness against 7% for a 25 mm thickness. With a highly compressible material, such as activated sludge, the filter-cake dryness did not change with the application of a shearing action. This behavior may be mainly attributed to the fact that biological sludge dewatering is markedly influenced by a low permeability skin at the cake/medium interface, which is very thin and not perturbed by shear forces, due to the cake thickness. The low rigidity of the solid matter in this particular case may also limit the reorientation of the particles.  相似文献   

5.
An electrodewatering filter press was designed and its performance was evaluated for basic operating parameters such as the electric field strength, time of electric field application, and changes in pressure. Dewatering efficiency improves with the increase of the electric field strength, application time, and pressure. Considering the operating costs due to energy consumption and electrode erosion, the optimal conditions were found to be 70 V/cm of electric field strength, 30 min of application time, and 588 kPa of pressure. The rate of electrodewatering doubled compared with that of mechanical dewatering (MDW) while the water content of the dewatered cake decreased by 25%. When an electric field is applied to the cake, clogging of the filter cloth becomes minimized due to electrophoretic mobility. The discharge of water from the cake porous matrix is facilitated owing to electroosmosis and thermal effect due to joule heating. As a result, the dewatering capacity of electrodewatering improves compared with the mechanical dewatering. The energy consumption of electrodewatering was about 370–450 kWh/t (dry solid), which accounts for only one tenth of the existing sludge treatment costs.  相似文献   

6.
An electrodewatering filter press was designed and its performance was evaluated for basic operating parameters such as the electric field strength, time of electric field application, and changes in pressure. Dewatering efficiency improves with the increase of the electric field strength, application time, and pressure. Considering the operating costs due to energy consumption and electrode erosion, the optimal conditions were found to be 70 V/cm of electric field strength, 30 min of application time, and 588 kPa of pressure. The rate of electrodewatering doubled compared with that of mechanical dewatering (MDW) while the water content of the dewatered cake decreased by 25%. When an electric field is applied to the cake, clogging of the filter cloth becomes minimized due to electrophoretic mobility. The discharge of water from the cake porous matrix is facilitated owing to electroosmosis and thermal effect due to joule heating. As a result, the dewatering capacity of electrodewatering improves compared with the mechanical dewatering. The energy consumption of electrodewatering was about 370-450 kWh/t (dry solid), which accounts for only one tenth of the existing sludge treatment costs.  相似文献   

7.
An electrodewatering filter press was designed and its performance was evaluated for basic operating parameters such as the electric field strength, time of electric field application, and changes in pressure. Dewatering efficiency improves with the increase of the electric field strength, application time, and pressure. Considering the operating costs due to energy consumption and electrode erosion, the optimal conditions were found to be: 70 V/cm of electric field strength, 30 min of application time, and 588 kPa of pressure. The rate of electrodewatering doubled compared with that of mechanical dewatering (MDW) while the water content of the dewatered cake decreased by 25%. When an electric field is applied to the cake, clogging of the filter cloth becomes minimized due to electrophoretic mobility. The discharge of water from the cake porous matrix is facilitated owing to electroosmosis and the thermal effect due to joule heating. As a result, the dewatering capacity of electrodewatering improves compared with the mechanical dewatering. The energy consumption of electrodewatering was about 370–450 kWh/t (dry solid), which accounts for only one tenth of the existing sludge treatment costs.  相似文献   

8.
An electrodewatering filter press was designed and its performance was evaluated for basic operating parameters such as the electric field strength, time of electric field application, and changes in pressure. Dewatering efficiency improves with the increase of the electric field strength, application time, and pressure. Considering the operating costs due to energy consumption and electrode erosion, the optimal conditions were found to be: 70 V/cm of electric field strength, 30 min of application time, and 588 kPa of pressure. The rate of electrodewatering doubled compared with that of mechanical dewatering (MDW) while the water content of the dewatered cake decreased by 25%. When an electric field is applied to the cake, clogging of the filter cloth becomes minimized due to electrophoretic mobility. The discharge of water from the cake porous matrix is facilitated owing to electroosmosis and the thermal effect due to joule heating. As a result, the dewatering capacity of electrodewatering improves compared with the mechanical dewatering. The energy consumption of electrodewatering was about 370-450 kWh/t (dry solid), which accounts for only one tenth of the existing sludge treatment costs.  相似文献   

9.
Real-scale thermal filter press dewatering equipment (plate size: 630 mm × 630 mm) was installed and operated at a waterworks for one year in an attempt to achieve sludge reduction. During the period, the dewaterability was evaluated according to the seasonal sludge properties in order to compare the dewaterability of thermal dewatering and mechanical dewatering, as well as to determine the economics of thermal dewatering. According to the results, the winter season sludge showed a 36% decrease in water content and a two-thirds reduction in dewatering velocity compared to the summertime sludge. In addition, the dewatered cakes of the thermal filter press dewatering equipment showed a lower specific cake resistance and water content in the dewatered cakes than the mechanical filter press dewatering equipment, indicating superior dewaterability. This was attributed to the easier removal of the filtrate remaining in the capillary tubes due to thermal dewatering. The energy consumption for thermal dewatering was 300 kJ/dry solids (DS) kg. A comparison of the sludge dryers indicated that it is possible to produce dewatered cakes that consume less energy and can be recycled. According to the performance evaluation results, the real-scale thermal filter press dewatering equipment had high adaptability to the changes in seasonal sludge, showing excellent dewaterability compared to the mechanical filter press dewatering equipment, and was economical due to the lower energy consumption.  相似文献   

10.
After mechanical dewatering, sewage sludge has a moisture content of around 80 wt% and further disposal is required. A new sewage sludge semi-drying (dewatering) process is proposed and verified. It combines thermal hydrolysis and subsequent mechanical dewatering, with less energy consumption than traditional thermal drying. Sludge treated using this new process satisfies further disposal requirements (e.g., landfill or autothermal incineration). In the present study, a high-pressure test reactor was used to study the thermal hydrolysis of dewatered sludge. Thermally hydrolyzed sludge was subsequently dewatered by centrifugal sedimentation or by pressure filtration. The amount of organic compounds returning to the water phase was also measured. According to the results from centrifugal settling tests, the optimal thermal hydrolysis treatment temperature was 180°C. The moisture content then dropped to 1.44 kg/kg dry solids (DS; 59 wt%) after dewatering under relative centrifugal force of 9,000 × g from 5.67 kg/kg DS (85 wt%). Pressure filtration further reduced the moisture content of filter cakes to only 0.5 kg/kg DS (33 wt%, hydrolysis temperature 180°C). After thermal hydrolysis, the heating value of sludge (moisture-free basis) was about 80% that of the untreated sludge.  相似文献   

11.
Electrocoagulation is applied to sewage sludge as a pretreatment process of an electrodewatering system to reduce the water content of sludge generated in wastewater treatment. The electrodewatering system, by incorporating an electric field as an additional driving force to the conventional pressure dewatering, has been evaluated as a function of an electrode material, applied voltage and filtration time. Experiments were carried out using sewage sludge with a pressure up to 392.4 kPa and applied electrical field ranging up to 120 V/cm. Mass median diameter of the sewage sludge by the effect of electrocoagulation increases from 34.7 μm to the 41.3 μm. The final water content of sewage sludge in the combination of both electrocoagulation and electrodewatering system can be reduced to 55 wt%, as compared to 78 wt% achieved with pressure dewatering alone. The combination of electrocoagulation and electrodewatering system shows a potential to be an effective method for reducing the water content in sludge.  相似文献   

12.
A statistical design of parametric study of pressure filtration for fine coal dewatering is presented. The effects of five major parameters of the dewatering, i.e. applied pressure, filtration time, cake thickness, solids concentration and slurry pH, on cake moisture reduction and air consumption were investigated. The study was conducted starting with two level factorial experiments to identify the most significant parameters, and concluding with response surface methodologies to establish an optimum operating condition for the dewatering of fine coal. It was observed that applied pressure, cake thickness and filtration time were identified to be the key operating variables for reduction of filter cake moisture as well as air consumption. With the key parameters, an optimum condition for the dewatering was determined to be an applied pressure of 93 psi with a cake thickness of 2.5 cm and a filtration time of 4.8 minutes for the laboratory filtration system. At these optimum conditions the filter cake containing about 22 percent moisture by weight and consuming air by 4.1 m3/(m2·min·kg) on dry solid basis was obtained.  相似文献   

13.
A laboratory-scale electrodewatering system, incorporating an electric field as an additional driving force to conventional pressure dewatering, has been developed to decrease the water content of sludges generated in wastewater treatment. Consisting of a piston-type filter press, a power supply and a data acquisition system, the electrodewatering system’s performance was evaluated as a function of applied pressure, applied voltage, sludge type and filtration time. Experiments were carried out using sewage sludges with the electric field up to 120 V/cm and pressure ranging from 98.1 to 392.4 kPa. Electrodewatering involving a combination of electric field and pressure enhances both the dewatering rate and final dewatered volume. The final water content of sewage sludges in the electrodewatering system can be reduced to 62 wt%, as compared to 78 wt% achieved with the pressure filtration alone. The electrodewatering system shows the potential to be an effective method for reducing the water content in sludges.  相似文献   

14.
Wastewater sludge usually contains large amounts of water and organic materials; therefore, its stabilization and dewatering are of particular importance. The present study aimed to investigate the possibility of sludge stabilization and dewatering from wastewater sludge by bioleaching (Thiobacillus ferrooxidans), Fenton/bioleaching, and bioleaching/Fenton-like processes. To evaluate sludge stabilization and dewatering, specific resistance to filtration (SRF), volatile suspended solids (VSS), total suspended solids (TSS), and soluble chemical oxygen demand (SCOD) were measured. In biological treatment with T. ferrooxidans with Fe2+ (2?g?L?1), 99.75, 33, 37, and 72% reduction were observed in SRF, VSS, TSS, SCOD, respectively, after 2 days. In the combined treatment of Fenton before bioleaching (including Fe2+ 2?g?L?1 and H2O2 1?g?L?1 with Fenton oxidation for 30?min followed by biological treatment with T. ferrooxidans for 2 days), the reduction rates in TSS, VSS, SCOD, and SRF were 40.18, 40.88, 60.95, and 75.43%, respectively. In treatment with the combined method of bioleaching before Fenton-like oxidation, the removal rates of the aforementioned parameters were 52.5, 54.4, 88, and 99.82%, respectively. In comparison to Fenton oxidation and bioleaching alone, combined biological method of bioleaching/Fenton-like oxidation using a lower dose of H2O2 and Fe2+ significantly improved sludge dewatering and stabilization.  相似文献   

15.
Hydrothermal carbonization of sewage sludge was carried out with the aim to evaluate the influence of process severity and initial solid content. Response surface methodology was applied to model yield and C yield responses. Enhanced dewaterability performance was recorded under mild processing conditions. The treatment promoted concentration and immobilization of Pb, Cd, Ni, Zn, and Cu. Variation of the solid content showed a stronger influence than severity on average yield and C yield. Higher heating values (HHVs) and energy retention efficiencies (EREs) of hydrochars obtained at the lowest solid content displayed the lowest values. Hence, the energy requirements of a first dewatering step should be compared with the related improvement in terms of HHV and ERE when sludge is used as feedstock.  相似文献   

16.
The objective of this research was to evaluate the dewatering of drinking water treatment sludge (DWTS) by vacuum electro-osmosis dewatering (VEOD) technology. DWTS has a high moisture content, with the water existing as free water, pore water, surface adhesion water and internal combined water. Vacuum filtration of 0.05 MPa can quickly dewater sludge and has low energy consumption, but can only remove free water and some pore water. The moisture content of the DWTS was reduced to below 79% by vacuum filtration technique alone. At this moisture content, all free water had been expelled by vacuum filtration. Electro-osmosis optimized for the experimental conditions (0.05 MPa, 2.5 V/cm) began after vacuum filtration ceased, and drew pore water and surface adhesion water to the cathode, where it was expelled through vacuum filtration. The VEOD process removed all free water. In addition, pore water and surface adhesion water were reduced by 60.2% and 15.9%, respectively.  相似文献   

17.
The effect of different conditioner doses and different applied pressures on the dewaterability of municipal sludge during the filtration and expression stage was assessed using a series of experiments referred to as a uniform design. The relative importance of conditioner dose and applied pressure on the dewatering characteristics of municipal sludge was evaluated with a quadratic model using partial least squares (PLS) regression analysis. It was shown that the developed quadratic model was able to accurately predict the dewatering characteristics during the whole process. It was further shown that lime as a physical conditioner had the most significant impact on filtration rate, expression rate, cake dry solids content, net sludge solids yield, and total cycle time. Aluminum polychloride as the inorganic flocculant had a quite complex effect although not as significant as lime. Filtration pressure had only a slight effect on dewaterability of the municipal sludge, though higher feeding pressure was needed in order to enhance the total feeding amount. Furthermore, expression pressure was only of benefit to cake dry solids content and expression rate and failed to improve other dewatering characteristics of the municipal sludge.  相似文献   

18.
《分离科学与技术》2012,47(6):788-795
The purpose of this laboratory study was to investigate the simultaneous impacts of the electro-dewatering process on dry solids (DS) content and mobilization of metals in sewage sludge. The results suggested that the use of polyelectrolytes is necessary in mechanical pressure-driven dewatering and also in electro-dewatering. With polyelectrolyte conditioning, the DS content in the final sludge cake could be increased to 39%. Dewatering with slightly cationic polymer was not effective, but medium, strongly and very strongly cationic polymers performed equally. During electro-dewatering, an increase of voltage from 10 to 40 V resulted in a dryer sludge cake. Polyelectrolyte addition reduced the content of exchangeable metal species and increased less mobile, reducible species in the sludge. Furthermore, the more stable or immobile metal fractions were more likely to remain intact in dewatered sludge. Among heavy metals, Cu and Pb were immobile but Cr, Co, Ni, and Zn could more easily be mobilized during electro-dewatering. The application of high voltage had a direct effect on the migration of metal fractions, whereas, the sludge conditioning by a different cationic polymer had an indirect effect on the migration of these metals during electro-dewatering.  相似文献   

19.
Yuqi Hu 《Drying Technology》2017,35(12):1450-1459
The applicability of freezing–thawing, compression, and electro-osmotic unit on dewatering water treatment residuals (WTRs) was studied through freezing–thawing conditioning followed by a pressurized electro-osmotic dewatering (PEOD) process. Results showed that 86.12% of bound water was released after freezing–thawing treatment at the optimum freezing temperature of ?10°C and duration of 22?h. At optimized mechanical pressure of 811?kPa and voltage of 30?V, the subsequent PEOD could lead to a water content of 58.70% in WTRs with estimated energy consumption of 0.107?kWh/kg (water removed), and free water was obviously removed by compression, while bound water content (BWC) remained stable. Moreover, freezing–thawing treatment remarkably reduced the PEOD duration from 200 to 20?min. Electro-osmotic treatment could accelerate dewatering rate and improve dewatering efficiency especially for raw WTRs. Therefore, direct compression on raw WTRs could be suited to warm regions, while natural freezing–thawing treatment combined with compression/electrical compression will be selected in cold regions.  相似文献   

20.
This study investigated experimentally the consolidation dewatering and centrifugal-settling processes for activated sludge subjected to cationic polyelectrolyte flocculation. The results were reported for the dynamic response of sediment cake thickness (an index for cake compaction) under various doses of polyelectrolyte conditioning, compression-permeability cell configuration and mode of operation (batch and continuous) in a centrifugal-settling cell. The reduction in sediment thickness of sludge by consolidation and centrifugation was found to correspond mostly well with the optimal dose of polyelectrolyte based on the capillary suction time. The relaxation/rebound of cake thickness was observed in both consolidation dewatering and centrifugal dewatering with comparable compaction/relaxation time scale ratios. The equilibrium sediment consolidation ratio increases with the effective solid pressure characterized by Pm and Ps, for the consolidation dewatering and centrifugal sedimentation, respectively. The experimentally determined time scales of the cake consolidation dewatering/centrifugal sedimentation processes agree reasonably well with the theory by Landman and Russel (Phys. Fluids A 5 (1993) 550).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号