首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
B.H. Tan  K.C. Tam 《Polymer》2010,51(14):3238-3243
The microstructure and rheological properties of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) microgels cross-linked with methylenebis-acrylamide (BA) were examined by dynamic light scattering and rheological techniques. As the temperature was increased from 10 to 50 °C, the particles diameter decreased by approximately two times near the volume phase transition temperature, Tv of between 30 and 35 °C. The addition of salt to the microgel dispersion provides competition for the water molecules hydrating the PNIPAM chains thus weakening the PNIPAM-H2O hydrogen bonds and the microgel progressively deswelled. The validity and limitation of the semi-empirical approach to model charged soft microgel particles developed previously were tested on this thermo-responsive system. A variable specific volume, k was introduced to convert the mass concentration to effective volume fraction. With increasing concentration, inter-particle repulsive force was enhanced, which overcame the osmotic force inside the soft particle, resulting in the expulsion of solvent from the swollen particles, and the particle shrank. The viscosity data for PNIPAM microgels at varying solution temperatures and ionic strength showed excellent agreement with the modified Krieger-Dougherty (K-D) model.  相似文献   

2.
To date, a great many researches were focused on improving stimuli-responsive and controlled-release properties of thermo-responsive hydrogel carriers, whereas for the research on flow characteristics during the phase transition, prior reports have not been found. In this paper, poly(N-isopropylacrylamide) (PNIPAM) spheres with thermo-responsive phase transition characteristics were prepared by cross-linked polymerization. In a transparent Pyrex glass pipe with hydrophilic inner wall, flow and aggregation characteristics of PNIPAM spheres during the phase transition from low temperature which was lower than the lower critical solution temperature (LCST) to high temperature (T>LCST) was studied for the first time. Many interesting phenomena about the flow and aggregation behaviors of PNIPAM spheres were found. The velocity of PNIPAM spheres in horizontal pipe decreased from 1.07 cm/s before the phase transition to 0.65 cm/s or even became zero after the phase transition, which is what targeting drug delivery systems desired. When the initial distance was about 5.5 mm at the entrance of testing pipe section, the PNIPAM spheres could aggregate together after the phase transition and subsequently roll forward; but when the initial distance was as large as 8.5 mm, the distance became close at first during the phase transition and then far after the phase transition. Similar results were also found as mentioned above in vertical pipe. When 10 spheres aggregated together, they stopped at a certain position just after the phase transition in horizontal pipe. If the flowrate was more than 40 ml/min, the aggregation configurations such as triangle, tetrahedron, hexahedron and octahedron which formed after the phase transition at flowrate of 20 ml/min disappeared. The results provided valuable information for future applications of thermo-responsive PNIPAM spheres.  相似文献   

3.
Kurt Van Durme  Wouter Loos 《Polymer》2005,46(23):9851-9862
The response rates of novel thermo-responsive poly(N-isopropyl acrylamide) (PNIPAM) hybrid hydrogels are compared to those of conventional chemically crosslinked PNIPAM hydrogels. The former materials were obtained by applying the sol-gel technology, in which the inorganic silica particles act as physical crosslinks for the organic polymer chains, leading to a semi-interpenetrating polymer network structure. In situ modulated temperature DSC shows that the introduction of hydrophilic silica improves the thermal response rate of the hybrid hydrogels to a great extent as compared to aqueous PNIPAM solutions and conventional PNIPAM hydrogels. Ex situ gravimetrical measurements also illustrate that the shrinking/swelling rate of the hybrid hydrogels is largely improved. It is assumed that the uniform distribution of the SiO2 units, as demonstrated by cryo-field emission scanning electron microscopy, causes the silica to act as nano-sized water reservoirs, which reduce the characteristic diffusion length of water in the PNIPAM matrix so that it can be transported faster within the hybrid PNIPAM nano-composite.  相似文献   

4.
采用无皂乳液聚合法制备聚(N-异丙基丙烯酰胺)/壳聚糖微凝胶(PNIPAM/CS),透射电镜和动态光散射研究了微凝胶外貌形态及刺激响应性。结果显示,微凝胶颗粒呈球形,具有核、壳结构形态。加入壳聚糖对PNIPAM的体积相转变温度(VPTT)有影响,微凝胶VPTT随壳聚糖用量的增加向高温迁移,此结果与示差量热法(DSC)测定一致。不同pH条件下微凝胶粒径变化表明,颗粒直径随pH增大逐渐减小,至碱性又增大,显示明显的pH敏感性;相应颗粒Zeta电位逐渐减小,接近中性达到等电点,至碱性反转为负值,这一变化能对微凝胶pH敏感性进行合理解释。  相似文献   

5.
Doubly thermo-responsive brush-linear diblock copolymer of poly[poly(ethylene glycol) methyl ether vinylphenyl]-block-poly(N-isopropylacrylamide) (PmPEGV-b-PNIPAM) is prepared by RAFT polymerization. The obtained brush-linear diblock copolymer exhibits two lower critical solution temperatures (LCSTs) corresponding to the linear poly(N-isopropylacrylamide) (PNIPAM) block and the brush poly[poly(ethylene glycol) methyl ether vinylphenyl] (PmPEGV) block in water. This brush-linear diblock copolymer undergoes a two-step temperature sensitive micellization. At temperature above the first LCST, the brush-linear diblock copolymer self-assembles into core-corona micelles with the dehydrated PNIPAM block forming the core and the solvated brush PmPEGV block forming the corona. When temperature increases above the second LCST, the polystyrene backbone in the brush PmPEGV block collapses onto the dehydrated PNIPAM core to form core-shell-corona micelles, in which the dehydrated PNIPAM block forms the core, the collapsed polystyrene backbone in the brush PmPEGV block forms the shell and the solvated poly(ethylene glycol) side-chains forms the corona. The effect of the length of the PNIPAM block and the length of the poly(ethylene glycol) side-chains on the thermo-responsive micellization and the size of core-shell-corona micelles is investigated.  相似文献   

6.
Self-assembly of poly(t-butyl acrylate-co-acrylic acid)-b-poly(N-isopropylacrylamide) [P(tBA-co-AA)-b-PNIPAM], which was obtained from part hydrolysis of PtBA-b-PNIPAM synthesized by sequential atom transfer radical polymerization (ATRP) was studied. Thermo- and pH-responsive core-shell-corona (CSC) micelles with different structures were formed from (PtBA-co-PAA)-b-PNIPAM in aqueous solution. At pH 5.8 and 25 °C, the block copolymer self-assembled into spherical core-shell micelles with hydrophobic PtBA segments as the core, hydrophilic PAA/PNIPAM segments as the mixed shell. Increasing temperatures, core-shell micelles converted into CSC micelles with PtBA as the core, collapsed PNIPAM as the shell and soluble PAA as the corona. Moreover, decreasing pH at 25 °C, PAA chains collapsed onto the core resulting in CSC micelles with PtBA as the core, PAA as the shell and PNIPAM as the corona.  相似文献   

7.
利用IPN技术合成了一种具有温度和pH双重敏感性的聚(N-异丙基丙烯酰胺)/聚丙烯酸半互穿网络微凝胶(PNIPAM/PAAc semi-IPN)。这种微凝胶在酸性条件下发生典型的体积相转变;而在弱碱性条件下,当温度低于聚(N-异丙基丙烯酰胺)(PNIPAM)微凝胶的体积相转变温度(VPTT)时,微凝胶的粒径随着温度的上升而增大,当温度达到VPTT后,粒径突然急剧减小,并随着温度的逐渐上升而减小,最终趋向平衡。  相似文献   

8.
Vildan OzturkOguz Okay 《Polymer》2002,43(18):5017-5026
A series of temperature sensitive hydrogels was prepared by free-radical crosslinking copolymerization of N-t-butylacrylamide (TBA) and acrylamide in methanol. N,N′-methylenebis(acrylamide) was used as the crosslinker. It was shown that the swelling behavior of the hydrogels can be controlled by changing the amount of TBA units in the network chains. Hydrogels immersed in dimethylsulfoxide (DMSO)-water mixtures exhibited reentrant swelling behavior, in which the gels first deswell then reswell if the DMSO content of the solvent mixture is continuously increased. In water over the temperature range of 2-64 °C, hydrogels with less than 40[percnt] TBA by mole were in a swollen state while those with TBA contents higher than 60[percnt] were in a collapsed state. Hydrogels with 40-60[percnt] TBA exhibited swelling-deswelling transition in water depending on the temperature. The temperature interval for the deswelling transition of 60[percnt] TBA gel was found to be in the range from 10 to 28 °C, while for the 40[percnt] TBA gel, the deswelling started at about 20 °C and continued until the onset of the hydrolysis of the network chains at around 64 °C. It was shown that the Flory-Rehner theory of swelling equilibrium provides a satisfactory agreement to the experimental swelling data of the hydrogels, provided that the sensitive dependence of the χ parameter on both temperature and polymer concentration is taken into account.  相似文献   

9.
Hengjie Lai 《Polymer》2010,51(6):1404-8844
FTIR in combination with perturbation correlation moving window (PCMW) technique was applied to study the phase transition of concentrated aqueous solutions of Poly(N-isopropylacrylamide) (PNIPAM) and its small molecular model compound N-isopropylpropionamide(NIPPA). It was found that lower critical solution temperature (LSCT) of 40% NIPPA/D2O solution was 39 °C which was higher by ca. 8 °C than that of PNIPAM, and that NIPPA exhibited much wider temperature ranges of phase transition from 30 to 50 °C while PNIPAM underwent the phase separation in a narrow temperature range (29.1-33.1 °C). Moreover, we utilized two-dimensional correlation infrared spectroscopy (2DIR) analysis to reveal that the presence of main chains didn't affect the sensitivity and changing sequence of different groups, but did have a strong effect on the size of aggregation and formation of hydrogen bonds between carbonyl groups and water molecules. Without the interference of hydrophobic main chains, the carbonyls of NIPPA (1600 cm−1) could interact with more water than those of PNIPAM (1627 cm−1) below LSCT, which was the reason of the slower and milder phase transition taking place in NIPPA system.  相似文献   

10.
Thermo-responsive brush copolymers poly(methyl methacrylate (MMA)-co-2-(2-bromoisobutyryloxy)ethyl methacrylate (BIEM)-graft-(N-isopropyl-acrylamide) (NIPAAm)) were synthesized using Cu-mediated “living” radical polymerization (LRP) approach. Varied grafting densities of the brushes were obtained through adjusting backbone structure as random, gradient and block respectively. The effect of grafting densities on their thermo-responsive phase transition behaviors in aqueous solution and on surface were investigated in detail. The lower critical solution temperature (LCST) of brush copolymers in solution was adjusted as 35, 37 and 38 °C through random, gradient and block backbone structure respectively. Their structure tunable thermo-responsive phase transition in solution were further confirmed by the different micelle aggregation behaviors above LCST which monitored by transmission electron microscopy (TEM) images and dynamic light scattering (DLS). In addition, surfaces modified by the resulted brush copolymers have a temperature tunable wettability based on thermo-responsive phase transition in solid, the similar WCA variation range of three brush copolymers implies that the composition of backbone does not much affect the switchable wettability of surfaces.  相似文献   

11.
Up to date, preparation of thermo-responsive mixed-matrix membranes (MMM) has only be described as small scale flat membranes or multi-step processes for hollow fiber membranes. In this work, the development of thermo-responsive MMM hollow fibers composed of polyethersulfone as membrane polymer and poly(N-isopropylacrylamide) (PNIPAM) microgel particles via the wet spinning process is presented. PNIPAM particles are synthesized with (NP-S, zavg 20°C = 105 nm) and without (NP-L, zavg 20°C = 250 nm) sodium dodecyl sulfate and their thermo-responsive behavior is characterized by dynamic light scattering. Particle size (NP-S, NP-L), particle content (10%, 15%) and the extrusion pressure in the wet spinning process (1.0–3.0 bar) are investigated as experimental parameters. Reversible thermo-responsive behavior of the hollow fibers is demonstrated by water permeability measurements at different temperatures (20 and 50°C). The largest switching factors (R) are observed for the hollow fibers containing NP-L. For 15% NP-L and 1 bar extrusion pressure, water permeances between 0.5 and 6.0 L m−2 h−1 bar−1 are observed, corresponding to R = 12 and a dextran (500 kDa) rejection of 91% at 25°C.  相似文献   

12.
《Polymer》2007,48(1):245-254
In the present article the swelling behavior of copolymer microgel particles made of poly(N-isopropylacrylamide)-co-vinylacetic acid using dynamic light scattering (DLS), neutron scattering, and in situ atomic force microscopy (AFM) for various copolymerized amounts of vinylacetic acid (VA) (up to 2.5 mol%) under slightly acidic conditions is studied. The transition temperature of these microgel particles is found to be ≈32.5 ± 1 °C, independent of the VA content. Microgel particles adsorbed onto a solid substrate display a similar volume phase transition as their dissolved counterparts. However, their swelling capacity is reduced by approximately one order of magnitude compared to the bulk value. Nevertheless, the observed effect still is sufficiently large to be exploited for the use of these particles in sensors or as nanoactuators. In addition it can be concluded that the continuous character of the transition observed in solution does not arise from the polydispersity of the particles but can be attributed to the heterogeneity inside each individual microgel particle. Finally, AFM images reveal a pattern on the surface of the collapsed particles, which we attribute to globules formed by collapsed dangling polymer chains. In solution these dangling ends form a brush contributing to the hydrodynamic dimensions of the microgels.  相似文献   

13.
In this study, the swelling behaviour of copolymer hydrogels of N-isopropylacrylamide (NIPAM) and itaconic acid (IA) in response to temperature and pH value of the external media was studied. The equilibrium degree of swelling for PNIPAM and PNIPAM/IA copolymers was greater at 25 °C than at 37 °C. The degree of swelling was low at low pH values. As the degree of ionization increased above the nominal pKa values of IA, the increased hydrophilicity resulted in larger degrees of swelling. At 37 °C, the PNIPAM hydrogel and some copolymers show anomalous swelling behaviour, i.e. the overshooting effect, in buffered solutions of certain pH values. A swelling-deswelling study showed that the deswelling process of the hydrogels was faster then the swelling process. According to dynamic swelling studies, the diffusion exponent and the diffusion coefficient both increase with increasing content of IA.  相似文献   

14.
Haifeng Gao  Shoukuan Fu 《Polymer》2005,46(4):1087-1093
In this paper, novel thermosensitive poly(N-isopropylacrylamide) (PNIPAM) nanocapsules with temperature-tunable diameter and permeability are reported. Firstly, the core-shell composite microparticles were synthesized by precipitation polymerization with isothiocyanate fluorescein (FITC) entrapped SiO2 as core and cross-linked PNIPAM as shell. Then, the SiO2 core was etched by hydrofluoric acid at certain condition and the pre-trapped FITC molecules remained within the inner cavity. The FITC release profile and TEM studies clearly indicate that the release behavior of FITC could be controlled effectively by the external temperature. Above the LCST of PNIPAM (32 °C), the dehydrated PNIPAM shell inhibited the release of FITC from the internal cavity while below its LCST, the fluorophore could permeate the swollen shell easily.  相似文献   

15.
Well-defined dually responsive block-brush copolymer of poly(ethylene glycol)-b-[poly(N-isopropylacrylamide)-g-poly(N,N-dimethylamino-ethylmethacrylate)], [PEG-b-P(NIPAM-g-PDMAEMA)] was successfully prepared by the combination of atom transfer radical polymerization (ATRP) and click chemistry based on azide-capped PDMAEMA and alkyne-pending PEG-b-PNIPAM copolymer. Azide-capped PDMAEMA was synthesized through ATRP of DMAEMA monomer using an azide-functionalized initiator of β-azidoethyl-2-bromoisobutyrate. Alkyne-pending PEG-b-PNIPAM copolymer was obtained through ATRP copolymerization of NIPAM with propargyl acrylate. The final block-brush copolymer was synthesized by the click reaction between these two polymer precursors. Because of characteristics of three different blocks, the copolymer exhibited dually thermo- and pH-responsive behavior. The responsive behaviors of block-brush copolymer were studied by laser light scattering, temperature-dependent turbidity measurement and micro differential scanning calorimetry. The phase transition temperature of block-brush copolymer increased with the decrease of pH value. At pH = 5.0, the copolymer displayed weak thermo-responsive behavior and might form uni-molecular micelles upon heating. At higher pH values, the block-brush copolymer aggregated intermolecularly into the micelles during the phase transition.  相似文献   

16.
Abstract This paper reports an easy and effective way to fabricate polystyrene/poly (N-isopropylacrylamide) (PS/ PNIPAM) core-shell particles and PNIPAM hollow spheres. The main point of the method is to take advantage of the hydrophobic interaction between initiator and PS particles. The hydrophobic azodiisobutyronitriles automatically concentrate around the PS particles and initiate polymerization of N-isopropylacrylamide (NIPAM) and the crosslinkermethylene bisacrylamide (MBA), which dissolve in the aqueous phase, at the surface of the PS nanoparticles. Then, PNIPAM adheres to the PS particles to form a coreshell structure as a result of their hydrophobic interaction. This interaction is due to the unique property of PNIPAM, namely, its ability to transition from hydrophilic to hydrophobic when the temperature rises to 32°C. Furthermore, the hollow PNIPAM spheres were obtained by etching the PS core with chloroform. __________ Translated from Journal of Nanjing University (Natural Sciences), 2007, 43(5): 483–488 [译自: 南京大学学报(自然科学)]  相似文献   

17.
Zhe Li 《Polymer》2009,50(3):825-2204
Asymmetric hollow particles were fabricated from the self-assembly of block copolymers poly(N-isopropylacrylamide)-block-poly(4-vinylpyridine) (PNIPAM-b-P4VP) and poly(ethylene glycol)-block-poly(acrylic acid) (PEG-b-PAA) in water. The shell of the asymmetric hollow particle was a polyion complex layer which acted as a semipermeable membrane. Outside the shell were PEG hydrophilic layers and inside were thermo-sensitive PNIPAM chains. When temperature was higher than the lower critical solution temperature (LCST) of PNIPAM, it became insoluble and collapsed onto the shrinking shell to form a hydrophobic lumen. The whole process was characterized by dynamic light scattering (DLS), static light scattering (SLS), transmission electron microscopy (TEM), atom force microscopy (AFM) and nuclear magnetic resonance (NMR).  相似文献   

18.
Structural characterization of hairy nanoparticles consisting of poly(styrene-co-glycidyl methacrylate) (St/GMA) core and poly(NIPA-co-vinylimidazole) (NIPA/VIm) hair has been carried out by dynamic light scattering. The hairy molecules were introduced by surface graft-polymerization of a mixture of NIPA and VIm monomers to the St/GMA core particles with the hydrodynamic radius RH of 135±10 nm. The RH of St/GMA-core-NIPA/VIm-hair particles was RH=360±20 nm at 20 °C, which gradually decreased to 285±10 nm by heating to 33.0 °C, and then underwent a sharp decrease to 175±10 nm by further heating to 33.8 °C. The final value went to 159±10 nm at 36 °C. This decrease in RH is due to the shrinking transition of NIPA/VIm chain by hydrophobic association. The degree of shrinking of the hairy particles is compared with that of bulk NIPA gels from the viewpoint of geometrical constraints.  相似文献   

19.
Yanling Xu  Rujiang Ma  Yingli An 《Polymer》2007,48(6):1711-1717
A novel double-hydrophilic block copolymer poly(N-isopropylacrylamide)-block-poly(4-vinylpyridine) (PNIPAM-b-P4VP) with low polydispersity which could respond to both temperature and pH stimuli in aqueous solution was synthesized by atom transfer radical polymerization. Micellization of the copolymer in aqueous solution was characterized by dynamic and static laser scattering, 1H NMR and transmission electron microscopy. In aqueous solution, the copolymer existed as unimer at pH 2.8 at 25 °C. When the temperature was raised to 50 °C at pH 2.8, the copolymer associated into spherical core-shell micelles with the PNIPAM block forming the core and the P4VP block forming the shell. On the other hand, when pH was increased from 2.8 to 6.5 at 25 °C, the copolymer associated into spherical core-shell micelles with the core formed by the P4VP block and the shell formed by the PNIPAM block. The process was reversible. The critical aggregation temperature of the block copolymer is 36 °C, and the critical aggregation pH value is 4.7.  相似文献   

20.
Well-defined pH- and thermo- multi-responsive fluorescent micelles based on the self-assembly of diblock copolymers poly[(N-isopropyl-acrylamide-co-N-vinylcarbazole)-b-2-(dimethylamino)ethyl acrylate], (PNIPAAM-co-PNVC)-b-PDMAEA, are described. The diblock copolymers are prepared via the reversible addition fragmentation chain transfer (RAFT) copolymerization of N-isopropyl-acrylamide (NIPAAM) and N-vinylcarbazole (NVC) followed by chain extension in presence of 2-(dimethylamino)ethyl acrylate) (DMAEA). The micelles are formed in aqueous solutions in a wide range of temperature (25-60 °C), and their sizes increase from 40 to 65 nm when varying pH from basic to acidic. The cross-linking of the PDMAEA-containing shell with 1,2-bis(2-iodoethoxy)ethane (BIEE) results in spherical soft nanoparticles which size is increased by 20-25% when compared to the micelles. The presence of NVC in concentrations as low as 4% in the core of the micelles allow the nanoparticles to be tagged by fluorescence, making them well suited for therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号