首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 194 毫秒
1.
王建  郭航  叶芳  马重芳 《化工学报》2018,69(4):1611-1619
温度对电动汽车锂离子电池有很重要的影响,电池温度过高时会降低电池的放电效率,加速电池寿命的衰减;冬季环境温度过低会降低电池的充电效率,缩短电动汽车的续航里程。为了使电池温度维持在合适的范围内,设计了动力电池复合相变材料热管理系统。将复合相变材料包裹在电池的外面,研究了相变材料对电池组温度场的影响。研究表明,相变潜热是最重要的物性参数,直接决定着电池组的最高温度。相变材料的热导率越大电池组的温度分布会越均匀。复合相变材料中石墨含量为25%时与纯石蜡相比可将电池组的最高温度降低2℃。在冬季,电池组有相变材料保温时,电池组的平均温度较无相变材料时高8℃。  相似文献   

2.
温度对电动汽车锂离子电池有很重要的影响,电池温度过高时会降低电池的放电效率,加速电池寿命的衰减;冬季环境温度过低会降低电池的充电效率,缩短电动汽车的续航里程。为了使电池温度维持在合适的范围内,设计了动力电池复合相变材料热管理系统。将复合相变材料包裹在电池的外面,研究了相变材料对电池组温度场的影响。研究表明,相变潜热是最重要的物性参数,直接决定着电池组的最高温度。相变材料的热导率越大电池组的温度分布会越均匀。复合相变材料中石墨含量为25%时与纯石蜡相比可将电池组的最高温度降低2℃。在冬季,电池组有相变材料保温时,电池组的平均温度较无相变材料时高8℃。  相似文献   

3.
基于泡沫铜/石蜡的锂电池热管理系统性能   总被引:4,自引:2,他引:2  
高效的热管理系统能极大提高电池使用寿命并保证电池安全运行。为提高能源利用效率,针对动力电池组散热问题设计了基于相变材料的被动式热管理系统。采用泡沫铜/石蜡构成复合相变材料以提高石蜡的导热性能,并对复合相变材料导热性能进了测试。通过改变孔隙率、加热功率及环境温度,对不同工况下基于复合相变材料的热管理系统性能进行了实验研究。实验结果表明,泡沫铜孔隙率分别为96%、95%以及93%的复合相变材料的热导率分别是纯石蜡的14.2倍、19.2倍和25.4倍。基于复合相变材料的热管理系统能显著降低热源温度,其冷却性能优于自然对流风冷热管理系统。当热源发热量及环境温度为定值,相同结构复合相变材料下,泡沫铜孔隙率越低,热管理系统性能越好。基于复合相变材料的热管理系统能显著减小由于加热功率和环境温度变化导致的温度波动,提高了热源温度稳定性。  相似文献   

4.
高效的热管理系统能极大提高电池使用寿命并保证电池安全运行。为提高能源利用效率,针对动力电池组散热问题设计了基于相变材料的被动式热管理系统。采用泡沫铜/石蜡构成复合相变材料以提高石蜡的导热性能,并对复合相变材料导热性能进了测试。通过改变孔隙率、加热功率及环境温度,对不同工况下基于复合相变材料的热管理系统性能进行了实验研究。实验结果表明,泡沫铜孔隙率分别为96%、95%以及93%的复合相变材料的热导率分别是纯石蜡的14.2倍、19.2倍和25.4倍。基于复合相变材料的热管理系统能显著降低热源温度,其冷却性能优于自然对流风冷热管理系统。当热源发热量及环境温度为定值,相同结构复合相变材料下,泡沫铜孔隙率越低,热管理系统性能越好。基于复合相变材料的热管理系统能显著减小由于加热功率和环境温度变化导致的温度波动,提高了热源温度稳定性。  相似文献   

5.
靳鹏超  王世学 《化工进展》2014,33(10):2608-2612
针对一种使用相变材料(PCM)的新型电动汽车电池热管理系统,以计算流体动力学(CFD)为基础,研究该系统在正常工况和滥用工况下的冷却性能。以模块的最高温度和最大温差作为监控参数,通过对电池在高温环境及大电流放电等工况的模拟,发现与相同结构的空气冷却条件下的电池组相比,填充PCM能够保证电池组的最大温度不超过安全温度50℃,最大温差在5℃以内,可以明显改善电池组的温度场分布,使电池的容量得到充分的利用。此外,作为一个被动的冷却方式,PCM热管理系统不需要提供额外的附加功率,能够很好的满足电池的工作要求。  相似文献   

6.
采用相变材料冷却的动力电池组的散热性能   总被引:1,自引:0,他引:1  
使用石蜡/石墨相变复合材料设计了单体电池和电池组,开展了动力型镍氢电池组散热的实验。通过测定电池在不同电流下放电过程中的温度变化,研究和比较了分别采用相变冷却技术与空气换热冷却技术的电池散热效果;并初步优化了石蜡/石墨复合相变材料的质量配比。实验结果表明,在1C放电倍率下,采用相变材料冷却相对于空气自然和强制对流冷却,电池温升分别降低14~18 ℃以及9~14 ℃。石蜡与石墨质量配比在4∶1时,电池组冷却效果达到最佳。相变材料填充的电池经过充放电循环后,电池性能没有显著劣化。  相似文献   

7.
尹少武  康鹏  韩嘉维  张朝  王立  童莉葛 《化工进展》2022,41(10):5518-5529
锂离子电池(lithium-ion battery,LIB)作为目前应用最广泛的储能电池之一,在电动汽车等行业发挥着至关重要的作用。电池的温度是影响LIB性能及安全性的重要因素,因此电池热管理(battery thermal management,BTM)至关重要。目前,利用相变材料(phase change material,PCM)进行相变冷却的热管理方式因其潜热高、不需消耗额外能量的优点已成为一种很有前途的方法。本文针对8节并联18650LIB的电池组性能进行了数值模拟及实验研究,探究了石蜡基复合相变材料(composite phase change material,CPCM)物性参数(包括热导率、熔点、相变潜热和材料厚度)对本文设计的电池组热管理性能的影响。结果表明,纯石蜡用于BTM可将3C放电下的电池最高温度降低28.0%,向石蜡中添加膨胀石墨后可使CPCM的热管理性能进一步提升,CPCM的热导率为2.0W/(m·K)时可将3C放电下的电池最高温度进一步降低5.42℃,继续增大CPCM热导率对热管理性能的提升较小。在综合考虑电池组的最高温度和温度均匀性的情况下,为得到在本文所设计的锂离子电池组最佳热管理性能,CPCM的热导率为2.0W/(m·K)、熔点应在36~38℃之间、相变潜热在212J/g左右、CPCM的厚度为4mm时最优。  相似文献   

8.
杨喆  刘飞  张涛  邓兴  张正文 《化工进展》2022,41(9):4918-4927
传统相变材料受限于自身热导率小,其相变蓄热效率难以提升,通过在相变材料中添加具有高热导率的金属多孔结构是强化传热的重要手段之一。本文建立了三周期极小曲面(triply periodic minimal surface,TPMS)多孔铝-石蜡复合相变材料的三维、瞬态包含自然对流的相变蓄热模型,利用数值仿真结合实验的方法研究了TPMS多孔铝-石蜡复合相变材料在蓄热过程中的固液相界面演变规律、实时温度变化、热传输特性以及蓄热性能。结果表明,在纯石蜡中添加primitive杆状(primitive sheet,PS)、primitive壳状(primitive network,PN)两种TPMS多孔铝结构后,石蜡相变温度范围内出现明显的相变温度平台,PS-石蜡、PN-石蜡复合相变材料的相变起始时间较纯石蜡分别减少了74.1%与91.4%,竖直方向上的最大温度梯度由纯石蜡的1605.7℃/m分别下降至PS-石蜡、PN-石蜡复合相变材料的840℃/m、943.8℃/m,蓄热速率较纯石蜡分别提高3.10倍、4.69倍。最后,通过选区激光熔化(selective laser melting,SLM)技术成型了PS、PN多孔铝结构,并采用浇筑法制备了TPMS多孔铝-石蜡复合相变材料样品,利用可视化实验平台对仿真结果进行实验验证,发现仿真结果同实验吻合较好。  相似文献   

9.
以石蜡为相变材料基液,分别添加不同体积分数的碳纳米管,通过两步法制备碳纳米管/石蜡复合相变材料,并对复合相变材料的热物性参数和相变性能进行了测试和表征。搭建试验台对复合相变材料进行蓄放热实验。结果表明,复合相变材料的相变温度与纯石蜡基本一致,相变潜热随纳米颗粒的添加量增大而减小;复合相变材料的凝固强化效果随碳纳米管添加量的增大而增强,添加量为体积分数2%时,凝固速率可以提升16.3%;对于熔化过程,导热和对流换热共同作用着复合相变材料的熔化速率能否被强化。  相似文献   

10.
以石蜡为相变材料基液,分别添加不同体积分数的碳纳米管,通过两步法制备碳纳米管/石蜡复合相变材料,并对复合相变材料的热物性参数和相变性能进行了测试和表征。搭建试验台对复合相变材料进行蓄放热实验。结果表明,复合相变材料的相变温度与纯石蜡基本一致,相变潜热随纳米颗粒的添加量增大而减小;复合相变材料的凝固强化效果随碳纳米管添加量的增大而增强,添加量为体积分数2%时,凝固速率可以提升16.3%;对于熔化过程,导热和对流换热共同作用着复合相变材料的熔化速率能否被强化。  相似文献   

11.
锂离子电池放电过程中产生的热量无法及时消散会导致电池性能下降,设计合理的电池组散热结构是提升电池性能的关键一环。提出一种复合相变材料(CPCM)与空冷结合的电池组散热结构。利用伪二维电化学模型与三维散热模型相结合,将电池产热过程、电池与外界传热过程进行解析,探究了相变材料(PCM)厚度、CPCM中膨胀石墨(EG)的含量、空冷孔道数量及空冷气体流通方向对电池组散热性能的影响。结果表明,CPCM/空冷复合式散热结构的散热性能明显优于只用CPCM的电池组,且当PCM厚度等于电池半径、EG质量分数为20%时,电池组散热性能最佳。此外,双向通风管道设计可以更有效地降低电池温度。所得结论可为锂离子电池组的散热设计提供理论指导。  相似文献   

12.
胡尚尚  刘道平  杨亮 《化工进展》2020,39(3):930-937
在空气自然对流状况下,研究了有机醇相变材料(十四醇)对软包方形锂电池放电过程的散热特性;同时建立锂电池散热系统物理模型,模拟相变体系中电池放电过程的温度变化,分析不同放电倍率对电池最高温度的影响。实验结果表明,环境温度为30℃时,在0.6C、0.8C和1.0C放电倍率下,锂电池温度分别下降了1.21℃、8.89℃和17.45℃;数值计算得出,环境温度为30℃时,锂电池在0.8C和1.0C放电倍率条件下,电池温度45℃以上的时长占比分别下降55%和58%;环境温度为35℃时,在1.0C放电倍率条件下,锂电池温度降低至65.14℃,超45℃时长占比为33%。相变材料只在其相变区间内起散热控温作用,数值模拟获得的电池温度变化与实验结果最大误差不超过2℃,研究结果对电池放电过程热管理技术应用有一定的参考意义。  相似文献   

13.
动力电池的最佳工作温度范围为20~50℃,因此热管理系统是其运行过程中不可分割的一部分。相变储热材料在发生相变时可以吸收或释放大量的热量并且温度基本保持不变,在电池热管理中得到广泛应用。本文综述了国内外基于相变储热技术的电池热管理系统的研究进展,主要介绍了基于相变材料的被动式热管理系统、主动式热管理系统以及主动式和被动相结合的耦合式热管理系统。综合来看,复合相变材料形状稳定性好、热导率高,可以有效地降低电池组的温度,提高电池组的温度均匀性。导电复合相变材料的电热转换特性还可用于低温下快速加热电池,实现加热-冷却一体化。然而在相变材料被动式热管理系统中,相变材料吸收的热量无法及时释放出去,热量的堆积会造成系统失效。将主动散热技术与相变材料耦合得到的耦合式热管理系统具有更好的控温性能、稳定性和安全性。此外,相变乳液以及相变微胶囊浆液具有比热容大、可相变等优点,替代水作为电池热管理系统的冷却介质可以获得更好的温度均匀性和更低的功耗。但相变乳液本身的稳定性差、过冷度大等问题亟需解决。总之,电池在高温和低温下都需要进行有效地温控,相变材料如何解决电池全温度段的热管理还值得进一步研究。  相似文献   

14.
Shadab Shaikh  Khalid Lafdi 《Carbon》2012,50(2):542-550
Design optimization of an encapsulated carbon composite thermal control (TC) system is presented. The composite TC system consists of multiple phase change materials (PCM) doped with carbon nanotubes and enclosed in a casing of carbon/carbon composite sheets. Using the concept of global thermal resistance an analytical model was formulated to predict the transient temperature distribution through the composite system. The temperature data was then used to estimate maximum energy storage and heat dissipation rates. A substantial reduction in weight and size of the TC composite was observed corresponding to the optimized design. The use of carbon nanotubes both as additives with optimal loading and as a thermal interface material significantly reduced the maximum junction temperatures for different constant power loads for the multiple PCM composite as compared to its original size used for the experimental work. The optimized composite minimized the total thermal resistance through the composite sample and thereby increased its thermal response as indicated by approximately 4 times increase in the heat dissipation rate.  相似文献   

15.
由于软包装电池外包装采用多层塑料复合薄膜,没有外部形状支撑,在高倍率使用条件下,电池会产生大量热量,同时由于副反应不可避免产生气体,出现体积涨缩及其他形变,导致性能和循环寿命下降。针对软包装电池特点,设计散热片,实现对电池散热及固定加紧的双重作用,成组热设计采用散热片与空气冷却相结合的形式。根据计算流体动力学原理,对电池箱进行模拟仿真计算,结果显示电池组最高温升为5 ℃,温度场最大温差2 ℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号