首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
《应用化工》2022,(2):332-335
以NH_4Cl溶液浸取电石渣得到的Ca(2+)溶液为钙源,以Na_2CO_3为碳化剂,制备超细CaCO_3。研究了Ca(2+)溶液为钙源,以Na_2CO_3为碳化剂,制备超细CaCO_3。研究了Ca(2+)浓度、碳化剂的滴加速度、反应温度、反应时间、pH、[CO32-]/[Ca(2+)浓度、碳化剂的滴加速度、反应温度、反应时间、pH、[CO32-]/[Ca(2+)]摩尔比对CaCO_3产率的影响。结果表明,在Ca(2+)]摩尔比对CaCO_3产率的影响。结果表明,在Ca(2+)浓度0.3 mol/L,Na_2CO_3滴速30 mL/min,温度40℃,反应时间30 min,Ca(2+)浓度0.3 mol/L,Na_2CO_3滴速30 mL/min,温度40℃,反应时间30 min,Ca(2+)溶液的pH为9,[CO32-]/[Ca(2+)溶液的pH为9,[CO32-]/[Ca(2+)]摩尔比1.1的条件下,CaCO_3产率92.07%,纯度97.35%。经X射线衍射和扫描电镜分析,合成的CaCO_3以方解石型为主,并含有部分球霰石型。方解石型含量为62.85%,颗粒为表面光滑致密的立方体结构,粒径为4~9μm,平均晶粒尺寸60 nm;球霰石型含量为37.15%,颗粒为表面不圆滑的球形结构,粒径3~8μm,平均晶粒尺寸28 nm。  相似文献   

2.
《广东化工》2021,48(18)
以电石渣为原料,NH_4Cl溶液浸取,Na_2CO_3为碳化剂,制备了方解石CaCO_3。首先探讨了 NH_4Cl溶液浓度、反应时间和溶液pH等因素对电石渣Ca~(2+)浸取率的影响,然后研究了 Ca~(2+)浓度、反应温度、反应时间等工艺参数对制备方解石型CaCO_3的影响,并通过X-射线衍射,扫描电子显微镜和红外光谱等对其结构进行表征。实验结果表明,在NH_4Cl溶液浓度为5 mol·L~(-1),pH 7,室温下浸取40 min,Ca~(2+)浸取率为95.15%;Ca~(2+)浓度为0.1 mol·L~(-1)、反应温度为60℃、反应时间为120 min,得到晶型较好的方解石型碳酸钙。  相似文献   

3.
《应用化工》2017,(9):1757-1760
电石渣105℃干燥,以氯化铵溶液为浸取剂,提取电石渣中的钙资源以制备碳酸钙。研究表明,反应时间30 min、pH=8、氯化铵过量程度为0的条件下,电石渣中的Ca~(2+)提取率最高,为93.31%。以Na_2CO_3溶液为碳化剂进行碳化反应,得碳酸钙产率90.76%,纯度97.67%。XRD和SEM分析表明,产品为球霰石型碳酸钙,颗粒呈类球形团聚,粒径为1~3μm。  相似文献   

4.
以电石渣为原料,NH_4Cl为浸取剂,CO_2为碳化剂,在较高Ca~(2+)初始浓度条件下制备粒度均匀的纳米CaCO_3。筛选并确定三聚磷酸钠(STP)和聚乙二醇(PEG)-10000为较适宜的复合添加剂;考察了添加剂用量、反应温度、CO_2流率的变化对样品粒径的影响,所确定较适宜的纳米CaCO_3合成工艺条件为:STP和PEG-10000用量分别为3%和1.5%,反应温度25℃,CO_2流率400mL/min。此条件下,所制备的纳米CaCO_3样品为纯相介稳态球霰石晶型,粒度均匀、分散性较好、平均粒径约45nm、平均晶粒尺寸20nm。通过对样品的X-射线衍射(XRD)、扫描电子显微镜(SEM)、和傅里叶红外光谱(FTIR)等表征,对反应温度、CO_2流率的变化对样品粒径的可能影响机制进行了分析,并对复合添加剂影响样品粒径的可能作用机制进行了探讨。  相似文献   

5.
探讨CaSO_4·2H_2O-NH_3-CO_2-H_2O溶解-结晶耦合体系CaCO_3结晶形貌的调控方法和机制。结果表明:反应过程中氨浓度越高,体系中的NH_2COO~-以及吸收的CO_2均增加,更容易形成球霰石型碳酸钙。当w(NH_3)为2%时,主要产物为方解石型碳酸钙,球霰石型碳酸钙占比18%;当w(NH_3)为8%时,主要产物为球霰石型碳酸钙,占比达到99%。由此提出碳酸钙的晶型受NH_2COO~-的极化作用与成核位置协同控制。  相似文献   

6.
采用CO2碳化法制备了微米级球霰石型食品级碳酸钙,探讨了碳化温度、Ca2+浓度、混合气中CO2浓度等制备工艺参数对碳酸钙晶型和形貌的影响,探讨了氨水用量、碳化时间对碳酸钙产率的影响,并采用FT-IR、XRD和SEM对制备的碳酸钙进行了表征。结果表明,碳化温度升高、混合气中CO2浓度降低,制备的碳酸钙晶型由球霰石型转变为方解石型;Ca2+浓度增加,制备的碳酸钙颗粒尺寸增大,碳化时间增加,产率先增加后减小。最佳制备条件为碳化温度20℃,Ca2+浓度0.3 mol/L,混合气中CO2浓度30%,[氨水]/2[Ca2+]摩尔比为1.1,碳化时间为24 min,制备的微米级球霰石型碳酸钙颗粒分布均匀,平均粒径为3.79μm,产率>99%,重金属含量低于国家标准《食品添加剂GB1898-2007轻质碳酸钙》的要求。  相似文献   

7.
烟气CO_2与工业固废磷石膏(CaSO_4·2H_2O)在CaSO_4·2H_2O-NH_3-CO_2-H_2O多相复杂体系中生成碳酸钙与硫酸铵,反应体系中游离的Ca~(2+)浓度呈下降趋势,产物CaCO_3为方解石和球霰石混合晶型。研究以乙二胺为添加剂,在固定搅拌转速、CO_2流量、氨水浓度的条件下,研究乙二胺(EDA)对CaSO_4·2H_2O-NH_3-CO_2-H_2O反应体系制备球霰石的影响及作用机理。结果表明:添加剂乙二胺以钙络合剂的形式参与反应抑制结晶,将反应体系的诱导期延长至60 min,根据质量守恒定律和配位解离平衡模拟的硫酸根浓度理论值与硫酸根浓度实验值、钙元素浓度实验值之间的误差小于20%。钙以游离态或与乙二胺形成配合物的形式存在于溶液中,钙浓度呈先上升后下降趋势,上升阶段钙浓度大于20℃时CaSO_4·2H_2O-NH_3-CO_2-H_2O的溶解度15 mmol×L~(-1),获得单一形貌的碳酸钙产品球霰石。随着乙二胺浓度的升高,诱导期内体系中钙浓度增加。通过延长诱导期,将反应结晶过程中的溶解与结晶过程分离,为直接制备纯净球霰石提供理论和可行性方面的指导。  相似文献   

8.
在室温(25℃)下采用CaCl_2和Na_2CO_3水溶液,不添加其他控制剂,通过快速混合溶液的方法,制备出球霰石型碳酸钙微球,考察不同浓度体系对产物的影响,并连续12 h观察所制备的碳酸钙微球在不同溶液中的转变过程。样品采用X射线衍射仪(XRD)和场发射扫描电子显微镜(FESEM)表征。结果表明:在0.5 mol/L浓度条件下,制备出的球霰石型碳酸钙微球分散性好,粒度均一;新制备的产物在母液中不稳定,较快地转变为方解石型碳酸钙菱面体,而在纯水中的稳定性较高,在无水乙醇中更加稳定。  相似文献   

9.
以电石渣为原料,NH_4Cl溶液作为浸取剂,NH_4HCO_3为碳化剂,三聚磷酸钠(STP)为分散剂,进行纳米CaCO_3制备的工艺条件研究。通过单因素条件实验和正交实验,考察并确定NH_4Cl浸取电石渣中Ca~(2+)离子较适宜的工艺条件为:反应时间70 min、搅拌速度为300 rpm、反应温度40℃、液固比14︰1、摩尔比n_(2NH4Cl)︰nCa(OH)_2为1.2︰1。以所制备CaCO_3样品的形貌和粒度为考察指标,考察并确定较适宜的纳米CaCO_3制备工艺条件为:溶液Ca~(2+)浓度1 mol/L、沉淀剂NH_4HCO_3溶液浓度0.5 mol/L、反应温度20℃、STP添加量3%,较适宜条件下所制备的样品为粒径约40~60 nm的纳米CaCO_3。  相似文献   

10.
分别在CaCl2碳化体系中(以CaCl2、CO2、NH3·H2O和油酸为原料)和Ca(OH)2碳化体系中(以Ca(OH)2、CO2和油酸为原料)采用微孔分散碳化法于室温下制备了微纳米CaCO3,并采用XRD、TEM和SEM等表征手段重点研究了油酸对CaCO3晶型和形貌的影响和调控.结果表明:在不添加油酸的CaCl2反应体系中,反应初期生成方解石相,随着反应的进行,球霰石相的含量逐渐增加,而油酸的加入使得该体系整个碳化过程中产物均为球霰石相.另外,油酸的加入还可以加速反应过程,使得球形颗粒的形成时间缩短.而Ca(OH)2反应体系中,整个碳化过程中产物均为方解石相,油酸的加入对晶体类型没有明显影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号