首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A multidimensional heterogeneous and dynamic model of a fixed‐bed heat exchanger reactor used for CO2 methanation has been developed in this work that is based on mass, energy and momentum balances in the gas phase and mass and energy balances for the catalyst phase. The dynamic behavior of this reactor is simulated for transient variations in inlet gas temperature, cooling temperature, gas inlet flow rate, and outlet pressure. Simulation results showed that wrong‐way behaviors can occur for any abrupt temperature changes. Conversely, temperature ramp changes enable to attenuate and even fade the wrong‐way behavior. Traveling hot spots appear only when the change of an operating condition shifts the reactor from an ignited steady state to a non‐ignited one. Inlet gas flow rate variations reveal overshoots and undershoots of the reactor maximum temperature. © 2017 American Institute of Chemical Engineers AIChE J, 64: 468–480, 2018  相似文献   

2.
The temperature distribution in a bench-scale fixed bed Fischer–Tropsch reactor using Co-based catalyst was investigated under conditions of 2 MPa and 458 K at various syngas partial pressures and space velocities. The single-tube reactor had a diameter of 0.05 m, which is representative of the diameters used in industrial applications. With a special designed temperature measurement, the detailed temperature distribution in a bench-scale reactor was reported for the first time. The changes of maximum temperature in the bed and hot spot region were discussed at different N2 flow rate and gas hourly space velocity. A 2D pseudo-homogeneous fixed bed reactor model was developed using ANSYS Fluent. A position-dependent heat-transfer coefficient, which considered more accurate in temperature prediction, was applied. The model was validated against both the reaction results and the measured temperatures. The inferred properties within the reactor were analyzed to give insight as to how to increase the reactor production capacity.  相似文献   

3.
The oxidation of glycerol by molecular oxygen in the aqueous phase over Au/TiO2 was investigated in both a batch reactor and a continuous upflow fixed bed reactor. The effects of catalyst particle size, gas flow rate, liquid flow rate, reaction temperature, dioxygen pressure, and solution pH were examined in the fixed bed system. The unique hydrodynamics of the fixed bed system allowed for secondary oxidation products such as tartronic acid and oxalic acid to form in substantial amounts, which contrasts the product distribution observed in a batch system. These results suggest that reactor configuration can play an important role in the observed product selectivity from oxidation reactions over highly active gold catalysts.  相似文献   

4.
Fischer–Tropsch synthesis (FTS) plays an important role in the production of ultra-clean transportation fuels, chemicals, and other hydrocarbon products. In this work, a novel combination of fixed-bed and slurry bubble column membrane reactor for Fischer–Tropsch synthesis has been proposed. In the first catalyst bed, the synthesis gas is partially converted to hydrocarbons in a water-cooled reactor which is fixed bed. In the second bed which is a membrane assisted slurry bubble column reactor, the heat of reaction is used to preheat the feed synthesis gas to the first reactor. Due to the decrease of H2/CO to values far from optimum reactants ratio, the membrane concept is suggested to control hydrogen addition. A one-dimensional packed-bed model has been used for modeling of fixed-bed reactor. Also a one-dimensional model with plug flow pattern for gas phase and an axial dispersion pattern for liquid-solid suspension have been developed for modeling of slurry bubble column reactor. Proficiency of a membrane FTS reactor (MR) and a conventional FTS reactor (CR) at identical process conditions has been used as a basis for comparison in terms of temperature, gasoline yield, H2 and CO conversion as well as selectivity. Results show a favorable temperature profile along the proposed concept, an enhancement in the gasoline yield and, thus a main decrease in undesirable product formation. The results suggest that utilizing this type of reactor could be feasible and beneficial. Experimental proof of concept is needed to establish the validity and safe operation of the proposed reactor.  相似文献   

5.
Partial oxidation of methane (POM) is a preferred method for synthesis gas, which usually occurs in fixed bed reactors. In this paper, the discrete element method (DEM) is used to reconstruct the structure of a reactor bed via simulating the process of filling the reactor with catalyst. The particle resolved CFD physical model with the detailed micro-kinetcis of the POM reaction was established to study the interaction among reactant flow, heat and mass transfer, and reaction in the fixed bed. The gas composition and temperature distribution in the reactor were obtained based on the simulation results. The effects of the space velocity and the reaction temperature on the CH4 conversion, catalyst selectivity, and catalyst surface coke formation were analyzed. The simulation results show that the temperature hot spots of the catalyst in the bed occur at the inlet and the temperature increases further near the wall. With the increase in space velocity, the conversion rate of CH4 decreases gradually, and the selectivity does not change significantly. As the temperature increases, the conversion rate of CH4 gradually increases and the selectivity decreases. The risk of coke formation on the catalyst surface rises axially and the C species concentration is relatively higher near the outlet. Appropriately increasing the gas velocity and increasing the temperature helps to reduce the surface coke accumulation of the catalyst.  相似文献   

6.
7.
Co-gasification of poor quality coals mixed with wastes has the advantage of diversifying energy resources and of decreasing the dependency on imported fossil fuels. However, the use of wastes like plastics increased the production of tar and gaseous hydrocarbons. Although, the correct adjustment of gasification experimental conditions, like temperature and air flow, may lead to some reduction of undesirable compounds, this procedure is not usually enough to accomplish effective reductions of tar and hydrocarbons, thus obliging to the use of further gas treatment. Co-gasification studies were undertaken in a pilot-scale installation. The syngas produced, after going through a cyclone to decrease particulates content, was further treated in two catalytic fixed bed reactors. In the first fixed bed reactor was used a low cost catalyst, like dolomite, to reduce H2S content in the gas and also to promote some tar destruction. In the second fixed bed reactor, Ni based catalysts were employed to achieve effective reduction of tar and other undesirable compounds. After the second fixed bed reactor, H2 content was much higher than that of the gas leaving the gasifier, values higher than 50% were obtained, while gaseous hydrocarbons contents were much lower, particularly CnHm contents were quite low, usually below the detection limit of the method used. The presence of tar was never detected after the second fixed bed reactor.  相似文献   

8.
In this work, steam gasification of Alcell and Kraft lignins were carried out in a fixed‐bed reactor in order to produce H2 and medium heating value gas. The conversion of lignins increased from a low of 64 wt% for Alceil lignin to a high of 88 wt% for Kraft lignin with increasing steam flow rate and temperature. Maximum H2 production of 60.7 mol% was obtained at 800°C and at a steam flow rate of 15 g/h/g of Kraft lignin, whereas maximum heating value of 18000 kl/m3 of the product gas was obtained at 650°C and at 5 g/h/g of Alcell lignin. Also, the performance of a Ni‐based steam reforming catalyst for the production of H2 was studied for both types of lignin in a dual fixed‐bed reaction system. A maximum H2 production of 63 mol% was obtained at a catalyst bed temperature of 750°C and at a catalyst loading of 0.3 g for Alcell lignin. The sulfur present in Kraft lignin had detrimental effect on the catalyst performance.  相似文献   

9.
The partial oxidation of butane to maleic anhydride in a membrane reactor with improved heat transfer through the wall has been studied in this work. The reactor consisted of a catalytic fixed bed with sintered metal membrane wall that allows the gradual feed of air from the external fluidized bed. The influence of the most important design and operation variables (reactor length, gas flow rate, inlet temperature, butane inlet concentration, and air gas flow rate) on butane conversion and maleic anhydride selectivity has been studied by means of computer simulations using an experimentally-validated detailed 2D model. The performance of this reactor was systematically compared to the corresponding conventional fixed bed reactor. The membrane reactor has been found to provide slightly higher selectivity than the fixed bed reactor. Moreover, in the membrane reactor, the mixing of butane and air takes place through the wall directly inside the catalytic bed. Since solid beds avoid flame propagation, the process can be operated with higher butane inlet concentrations under safety conditions. Hence, the fluidized bed membrane reactor represents an interesting alternative for industrial-scale operation.  相似文献   

10.
Wire‐mesh sensors are increasingly used for flow imaging in packed beds. In this study, a capacitance wire‐mesh sensor is applied to measure the cross‐sectional liquid phase distribution in a rotating fixed‐bed reactor. The liquid filling level is derived as a crucial parameter defining the operational window of the reactor concept. Contrary to the standard sensor configuration, wireless data transfer and autonomous power supply is integrated. Furthermore, appropriate data processing is required to visualize the liquid flow of the three‐phase system (nitrogen, cumene and γ‐Al2O3 particles).  相似文献   

11.
The classical fixed bed C3–C4 paraffin dehydrogenation process is a cyclic operation in which the reactor alternates between reaction and reheat cycles. During the reheat cycle, the necessary energy for the dehydrogenation reaction is stored in the fixed bed by passing hot air through it. In this established technology, both the hydrocarbon reactant and the reheat hot air are fed into the fixed bed from the same end (top) of the reactor. This is termed parallel flow (cocurrent) operation. An alternative feeding fixed bed has the hydrocarbon reactant and the reheat air entering from the opposite ends of the reactor. This is termed reverse flow (countercurrent) operation. This alternate creates an ideal temperature profile for an equilibrium limited endothermic reaction (rising temperature profile along the reactor). The transient flow behavior of both parallel and reverse flow reactors has been modelled and the dynamics of temperature profile development for both concepts have been analyzed. Based upon the model predictions, the characteristics as well as the reactor stability of the both concepts have been discussed.  相似文献   

12.
A mathematical model for the catalytic autothermal reforming (ATR) reaction of synthetic crude glycerol to hydrogen in a fixed bed tubular reactor (FBTR) and over an in-house developed metal oxide catalyst is presented in this work. The heterogeneous model equations account for a two-phase system of solid catalyst and bulk feed gas. Also, the ATR of crude glycerol reaction scheme and intrinsic kinetic rate model over an active, selective, and stable nickel-based catalyst were integrated in the developed model. Also, the model was validated using experimental data generated in our labs for the ATR of synthetic crude glycerol. The modelling results adequately described the detailed gas product composition and distribution, temperature profiles, and conversion propagation in the axial direction of the fixed bed reactor over a wide range of reaction temperature (773-923 K) and mass-time (12.71-158.23 g cat·min·(mol C)-1). The crude glycerol conversion predicted with the model showing a close resemblance to those obtained experimentally with an average absolute deviation (AAD) of less than 8%. The maximum crude glycerol conversion and hydrogen yield were found to be 92% and 3 mol hydrogen/mol crude glycerol, respectively. Also, the gas product concentration profile in the reactor was adequately described (90%) accuracy with a hydrogen concentration of 39% (volume).  相似文献   

13.
The heterogeneously catalyzed oxidative dehydrogenation of isobutyric acid in a fixed bed reactor using molybdenum (Mo) heteropoly acids as catalysts shows a loss of Mo into the gas phase due to the formation of volatile Mo-complexes under reaction conditions. To avoid this loss of catalyst and to keep the catalytic material in the fixed bed and thus increase the catalyst's lifetime, the process has been performed under periodic flow reversal within the reactor. In this work, periodic flow reversal is tried in a semi-pilot test reactor as a method to fix the Mo-compounds in the catalyst bed. The influence of this mode of operation on the temperature profile in the reactor, on conversion, selectivity and yield of the product methacrylic acid is investigated in comparison with the process without periodic flow reversal.  相似文献   

14.
A packed‐bed reactor was established to study the effect of temperature on the controlled air oxidation (CAO) performance of a mixture of polypropylene and sawdust at a fixed feed gas flow rate. The reactor temperature was varied from 400 to 800 °C. Attention was focused on product distribution, compositions of liquid and gas products, and technical parameters. The chemical composition of the liquid products was analyzed by gas chromatography/mass spectrometry. The results indicated an obvious impact of the temperature on the described parameters. The increase in temperature led to the decrease in solid fraction and a convex shape curve for the gas yield as well as to a decrease of alkanes and alkenes, and favored the generation of oxygen‐containing hydrocarbons. According to criteria of CAO conversion, the optimum temperature in the primary chamber was found to be 700 °C.  相似文献   

15.
The gasification characteristics of combustible wastes were determined in a 5 ton/day fixed bed gasifier (1.2 m I.D. and 2.8m high). The fixed bed gasifier consisted of air compressor, oxygen tank, MFC, fixed bed gasifier, cyclone, heat exchanger, solid/gas separator, water fluidized bed reactor and blower. To capture soot or unburned carbon from the gasification reaction, solid/gas separator and water fluidized bed were used. The experiments with 10–50 hours of operation were carried out to determine the effects of bed temperature, solid/oxygen ratio and oxidant on the gas composition, calorific value and carbon conversion. The calorific values of the produced gas decreased with an increase of bed temperature because combustion reaction happened more actively. The gas composition of partial oxidation of woodchip is CO: 34.4%, H2: 10.7%, CH4: 6.0%, CO2: 48.9% and that of RPF is CO: 33.9%, H2: 26.1%, CH4: 10.7%, CO2: 29.2%. The average calorific values of produced gas were about 1,933 kcal/Nm3, 2,863 kcal/Nm3, respectively. The maximum calorific values were 3,100 kcal/Nm3 at RPF/oxygen ratio: 7  相似文献   

16.
A new application of the fixed bed catalytic reactor with flow reversal for combustion of natural gas is investigated by mathematical modeling and computer simulation. Comparison between the results obtained for this new reactor and those for a classic catalytic fixed bed is made. Inexpensive perovskite type catalysts containing no noble metals were used. It is shown that an appropriate choice of operating parameters (concentration and temperature of input gas mixture, superficial gas velocity, size and shape of catalyst and inert material, volumetric ratio between catalyst and inert material in the bed) allows for a methane combustion at must lower temperatures in the reactor with flow reversal than in a classic catalytic reactor. Under such a low temperature combustion, no nitrogen oxides are produced.  相似文献   

17.
Industry relies on fluidized beds to synthesize chemicals (acrylonitrile, maleic anhydride, titanium dioxide, vinyl chloride), combust coal, dry powders, and treat waste. Fluidized bed folklore declares that they are hard to scale‐up and the gas phase is backmixed. Commercial failures that disregard standard design criteria around powder management, gas/solids injection, and mixing reinforce this belief. However, engineers select fluidized beds for processes that are impractical with conventional technologies to achieve economies of scale for highly exothermic, endothermic, or explosive reactions, for catalysts that deactivate in seconds (or minutes), and for chemistry that requires multiple dosing cycles. Failures are more frequent for these challenging applications. For this reason, researchers study reaction kinetics in fixed beds despite internal mass transfer limitations and axial and radial temperature and concentration gradients. Fluidized bed hydrodynamics vary with powder properties (particle diameter, size distribution, density, sphericity), operating conditions (gas density, viscosity, temperature, pressure), reactor geometry (diameter, height, mass, grid geometry). The minimum fluidization velocity (Umf) is a property that identifies the transition from the fixed bed regime to the fluidized bed regime and equals the gas velocity at which the upward drag force equals the weight of the powder. At the experimental scale, fluidized beds operate isothermally, solids are completely backmixed, and the gas phase is close to plug flow (). Here, we describe the relationship between powder properties and fluidization quality, list experimental techniques, describe recent applications, and gas phase hydrodynamics and uncertainties.  相似文献   

18.
Chemical Looping Combustion technology involves circulating a metal oxide between a fuel zone where methane reacts under anaerobic conditions to produce a concentrated stream of CO2 and water and an oxygen rich environment where the metal is reoxidized. Although the needs for electrical power generation drive the process to high temperatures, lower temperatures (600–800°C) are sufficient for industrial processes such as refineries. In this paper, we investigate the transient kinetics of NiO carriers in the temperature range of 600 to 900°C in both a fixed bed microreactor (WHSV = 2‐4 g CH4/h/g oxygen carrier) and a fluid bed reactor (WHSV = 0.014‐0.14 g CH4/h per g oxygen carrier). Complete methane conversion is achieved in the fluid bed for several minutes. In the microreactor, the methane conversion reaches a maximum after an initial induction period of less than 10 s. Both CO2 and H2O yields are highest during this induction period. As the oxygen is consumed, methane conversion drops and both CO and H2 yields increase, whereas the CO2 and H2O concentrations decrease. The kinetics parameter of the gas–solids reactions (reduction of NiO with CH4, H2, and CO) together with catalytic reactions (methane reforming, methanation, shift, and gasification) were estimated using experimental data obtained on the fixed bed microreactor. Then, the kinetic expressions were combined with a detailed hydrodynamic model to successfully simulate the comportment of the fluidized bed reactor. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

19.
Catalytic air purification; Challenges and new solutions. The integration of regenerative heat exchange into the catalyst bed allows for the autothermal operation of catalytic air purification with a low content of combustible gas. Concentrations corresponding to an adiabatic temperature rise of less then 20 °C can be processed without an additional heat source; in case of higher concentratons a side stream withdrawal allows for the utilization of the total heat of combustion at the highest reactor temperature. The feedback of heat due to the integrated heat exchange gives rise to an unusual reactor behaviour. An analogy of fixed bed reactor operation with countercurrent heat exchange is used to derive simple equations for reactor design and operation. If conventional catalyst packings are replaced by monolithic catalysts, substantial reduction in pressure loss and/or packed bed volume can be obtained. The corresponding relations are briefly discussed.  相似文献   

20.
A time- and space-dependent model based on the piston-dispersion-exchange model for liquid flow was developed to analyze the performance of two-phase upflow and downflow fixed bed reactors and was applied to the catalytic SO2 oxidation. The hydrodynamic parameters were determined from residence time distribution measurements, using an imperfect pulse method for time-domain analysis of nonideal pulse tracer response. A transient diffusion model of the tracer in the porous particle coupled with the PDE model was used to interpret the obtained RTD curves. Gas-liquid mass transfer parameters were determined by a stationary method based on the least square fit of the calculated concentration profiles in gas phase to the experimental values. It is shown that two-phase downflow fixed bed reactor performs better at low liquid flow rates, while two-phase downflow fixed bed reactor performs better at low liquid flow rates, while two-phase upflow performs better at high liquid flow rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号