首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane electrode assemblies (MEA) were prepared using PtRu black and 60 wt.% carbon-supported platinum (Pt/C) as their anode and cathode catalysts, respectively. The cathode catalyst layers were fabricated using various amounts of Pt (0.5 mg cm−2, 1.0 mg cm−2, 2.0 mg cm−2, and 3.0 mg cm−2). To study the effect of carbon support on performance, a MEA in which Pt black was used as the cathode catalyst was fabricated. In addition, the effect of methanol crossover on the Pt/C on the cathode side of a direct methanol fuel cell (DMFC) was investigated. The performance of the single cell that used Pt/C as the cathode catalyst was higher than single cell that used Pt black and this result was pronounced when highly concentrated methanol (above 2.0 M) was used as the fuel.  相似文献   

2.
Ethanol is one of the promising future fuels of Direct Alcohol Fuel Cells (DAFC). The electro‐oxidation of ethanol fuel on anode made of carbon‐supported Pt‐Ru electrode catalysts was carried out in a lab scale direct ethanol fuel cell (DEFC). Cathode used was Pt‐black high surface area. The membrane electrode assembly (MEA) was prepared by sandwiching the solid polymer electrolyte membrane, prepared from Nafion® (SE‐5112, DuPont USA) dispersion, between the anode and cathode. The DEFC was fabricated using the MEA and tested at different catalyst loadings at the electrodes, temperatures and ethanol concentrations. The maximum power density of DEFC for optimized value of ethanol concentration, catalyst loading and temperature were determined. The maximum open circuit voltage (OCV) of 0.815 V, short circuit current density (SCCD) of 27.90 mA/cm2 and power density of 10.30 mW/cm2 were obtained for anode (Pt‐Ru/C) and cathode (Pt‐black) loading of 1 mg/cm2 at a temperature of 90°C anode and 60°C cathode for 2M ethanol.  相似文献   

3.
The performance of a Nafion 112 based proton exchange membrane (PEM) fuel cell was tested at a temperature range from 23 °C to 120 °C. The fuel cell polarization curves were divided into two different ranges based on current density, namely, <0.4 A/cm2 and >0.4 A/cm2, respectively. These two ranges were treated separately with respect to electrode kinetics and mass transfer. In the high current density range, a linear increase in membrane electrode assembly (MEA) power density with increasing temperature was observed, indicating the advantages of high temperature operation.Simulation based on electrode reaction kinetic theory, experimental polarization curves, and measured cathodic apparent exchange current densities all gave temperature dependent apparent exchange current densities. Both the calculated partial pressures of O2 and H2 gas in the feed streams and the measured electrochemical Pt surface areas (EPSAs) decrease with increasing temperature. They were also used to obtain the intrinsic exchange current densities. A monotonic increase of the intrinsic exchange current densities with increasing temperature in the range of 23-120 °C was observed, suggesting that increasing the temperature does promote intrinsic kinetics of fuel cell reactions.There are two sets of cathode apparent exchange current densities obtained, one set is for the low current density range, and the other is for the high current density range. The different values of cathode current densities in the two current density ranges can be attributed to the different states of the cathode Pt catalyst surface. In the low current density range, the cathode catalyst surface is a Pt/PtO, and in the high current density range, the catalyst surface becomes pure Pt.  相似文献   

4.
BACKGROUND: The commercialization of DMFCs is seriously restricted by its relatively low power density. Lots of work has been concentrated on catalysts with high activity, the optimization of flow path design, development of new kinds of proton exchange membrane and modification of Nafion membrane. Meanwhile, very few reports have involved the structure optimization of the membrane electrode assembly (MEA). To improve the performance of direct methanol fuel cells (DMFCs), the catalyst layer (CL) structures of anode and cathode were optimized by utilizing ammonium carbonate as pore forming agent. RESULTS: The polarization curves showed that in catalyst slurry the optimal content of ammonium carbonate was 50 wt%, and the DMFC performance was enhanced from 75.65 mW cm?2 to 167.42 mW cm?2 at 55 °C and 0.2 MPa O2. Electrochemical impedance spectroscopy and electrochemical active surface area (EASA) testing revealed that the improved performance of optimized MEAs could be mainly attributed to the increasing EASA and the enhanced mass transfer rate of CLs. But poor methanol crossover limited the performance enhancement of MEAs with porous anodes. CONCLUSION: With regard to improving cell performance, this pore‐forming technology is better applied to the cathode catalyst layer to improve its structure rather than the anode catalyst layer. © 2012 Society of Chemical Industry  相似文献   

5.
BACKGROUND: Pt‐free cathodic catalyst is needed for microbial fuel cells (MFCs). Perovskite‐type oxide could be a substitute for Pt because it has been proved to be a highly active and low‐cost oxygen reduction catalyst in chemical fuel cells. RESULTS: A nano‐sized La0.4Ca0.6Co0.9Fe0.1O3 perovskite‐type oxide on a carbon support (LCCF/C) was prepared and tested for its performance and stability (15 cycles) in MFCs. An exchange current density of 7.030 × 10?5 (A cm?2) was obtained with fresh LCCF/C cathode and is increased to 7.438 × 10?5 (A cm?2) after 15 cycles operating in MFCs. A power density of 405 mW m?2 was achieved with the LCCF/C cathode at the 2nd cycle which was between those of Pt/C (560 mW m?2) and C (339 mW m?2) cathodes. At the end of the 15th cycle, the lowest decay (due to biofouling) rate on the open circuit voltage (2%) and the maximum power density (15%) were observed with LCCF/C cathode compared with those of Pt/C (4%, 17%) and C (22%, 69%) cathodes, respectively. CONCLUSIONS: This study demonstrated that perovskite‐type oxide on carbon support catalysts could be a potential substitute for Pt for cathodic oxygen reduction reaction (ORR) in air‐cathode MFCs. © 2012 Society of Chemical Industry  相似文献   

6.
In this work, a novel self-humidifying membrane electrode assembly (MEA) with Pt/SiO2/C as anode catalyst was developed to improve the performance of proton exchange membrane fuel cell (PEMFC) operating at low humidity conditions. The characteristics of the composite catalysts were investigated by XRD, TEM and water uptake measurement. The optimal performance of the MEA was obtained with the 10 wt.% of silica in the composite catalyst by single cell tests under both high and low humidity conditions. The low humidity performance of the novel self-humidifying MEA was evaluated in a H2/air PEMFC at ambient pressure under different relative humidity (RH) and cell temperature conditions. The results show that the MEA performance was hardly changed even if the RHs of both the anode and cathode decreased from 100% to 28%. However, the low humidity performance of the MEA was quite susceptible to the cell temperature, which decreased steeply as the cell temperature increased. At a cell temperature of 50 °C, the MEA shows good stability for low humidity operating: the current density remained at 0.65 A cm−2 at a usual work voltage of 0.6 V without any degradation after 120 h operation under 28% RH for both the anode and cathode.  相似文献   

7.
Membrane electrodes prepared by chemical deposition of platinum directly onto the anion exchange membrane electrolyte were tested in direct methanol alkaline fuel cells. Data on the cell voltage against current density performance and anode potentials are reported. The relatively low fuel cell performance was probably due to the low active surface area of Pt deposits on the membrane comparing to other membrane electrode assembly (MEA) fabrication methods. However, the catalysed membrane electrode showed good performance for oxygen reduction. A reduction in cell internal resistance was also obtained for the catalysed membrane electrode. By combining the catalysed membrane electrodes with a catalysed mesh, maximum current density of 98 mA cm–2 and peak power density of 18 mW cm–2 were achieved.  相似文献   

8.
To decrease the Pt content, a polymer electrolyte membrane fuel cell (PEMFC) was formed using a carbon supported Pd96Pt4 catalyst as the anode material, and a carbon supported Pd49Pt47Co4 catalyst as the cathode material. The as-obtained Pd-based PEMFC with an overall Pd:Pt:Co atomic composition of electrodes (anode + cathode) = 72:26:2 exhibited a performance not too far from that of the fuel cell with the conventional 100% Pt electrodes. With a Pt content of 35 wt% of that of the cell with full Pt electrodes, at a current density of 1 A cm−2 the performance loss of the cell with the Pd-based catalysts was only 11%, with 6% ascribed to the anode catalyst and 5% to the cathode catalyst. The maximum power density of the Pd-based cell was 76% of that of the cell with Pt catalysts.  相似文献   

9.
Micelle-encapsulated multi-walled carbon nanotubes (MWCNTs) with sodium dodecyl sulfate (SDS) were used as catalyst support to deposit platinum nanoparticles. High resolution transmission electron microscopy (HRTEM) images reveal the crystalline nature of Pt nanoparticles with a diameter of ∼4 nm on the surface of MWCNTs. A single proton exchange membrane fuel cell (PEMFC) with total catalyst loading of 0.2 mg Pt cm−2 (anode 0.1 and cathode 0.1 mg Pt cm−2, respectively) has been evaluated at 80 °C with H2 and O2 gases using Nafion-212 electrolyte. Pt/MWCNTs synthesized by using modified SDS-MWCNTs with high temperature treatment (250 °C) showed a peak power density of 950 mW cm−2. Accelerated durability evaluation was carried out by conducting 1500 potential cycles between 0.1 and 1.2 V with 50 mV s−1 scan rate, H2/N2 at 80 °C. The membrane electrode assembly (MEA) with Pt/MWCNTs showed superior performance stability with a power density degradation of only ∼30% compared to commercial Pt/C (70%) after potential cycles.  相似文献   

10.
A porous non‐platinum electrocatalyst for the oxygen reduction reaction (ORR), obtained by pyrolysing a cobalt porphyrin precursor, was evaluated by electrochemical means. The reactivity of the non‐platinum ORR catalyst was investigated with a rotating disc electrode (RDE) experimental set up. RDE data were collected in an acidic electrolyte containing N2, O2, CO and under mixed reactant O2/methanol conditions. The electrochemical performance of such‐obtained non‐platinum catalyst is discussed and compared to platinum‐based ORR catalysts. Based on the results collected here, we are able to propose and test possible proton exchange fuel cell (PEFC) operating conditions where non‐platinum ORR catalysts can be utilised. Direct methanol fuel cell (DMFC) data demonstrating a superior performance of the non‐platinum catalyst relative to platinum black, often perceived as the state‐of‐the‐art oxygen–reduction catalyst for the DMFC cathode is presented.  相似文献   

11.
The fuel cell differential electrochemical mass spectrometry (FC‐DEMS) measurements were performed for studying the ethanol oxidation reaction (EOR), using alkaline membrane electrode assemblies (MEAs) made up of nanoparticle Pt catalyst and alkaline polymeric membranes. The obtained results indicate that in an alkaline medium, ethanol undergoes significantly more complete electro‐oxidation to CO2 than in an acidic MEA using the same Pt anode. The CO2 current efficiency (CCE) can be compared for acidic and alkaline MEA with similar electrochemical active area on the anode side. The CCE estimated, in case of alkaline MEA with Pt anode, is around 55% at 0.8 V/RHE, 60 °C and 0.1 M ethanol. In comparison, under similar conditions, acidic MEAs using the same anode catalyst show only 2% CCE. This might indicate that the C–C bond scission rates are much higher in alkaline media. However, the mechanism of ethanol oxidation in alkaline media is not exactly known. CO2 produced in electrochemical reaction forms soluble carbonates in the presence of aqueous alkaline electrolyte. This makes it difficult to study ethanol oxidation in alkaline media using FTIR or model DEMS systems. The alkaline polymer electrolyte membranes as used in this study for making alkaline MEAs provide an important opportunity to observe CO2 produced during EOR using FC‐DEMS system.  相似文献   

12.
PEMFC用Pt纳米线阴极催化剂的制备及在电堆中的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
采用无模板法制备了用于质子交换膜燃料电池(PEMFC)的碳载铂纳米线(Pt NWs/C)阴极催化剂,使用透射电镜(TEM)和X射线衍射图谱技术(XRD)对催化剂的微观结构和形貌进行了表征。研究结果表明,制备的铂催化剂具有纳米线的结构,平均截面直径为(4.0±0.2)nm,线长为15~25 nm。利用循环伏安(CV)法和线性伏安扫描法(LSV)表征催化剂的电化学活性和氧还原反应(ORR)特性,结果表明制备的Pt NWs/C催化剂电化学特性良好。利用Pt NWs/C和Pt/C作为阴极催化剂制备膜电极(MEA),并进行测试,最大功率密度分别为705.6 mW·cm-2和674.4 mW·cm-2。然后以Pt NWs/C和Pt/C为阴极催化剂组装了18片和20片的电堆,并进行性能测试,电堆的最大功率密度分别为409.2 mW·cm-2和702.7 mW·cm-2,单电池电压差异系数(Cv)分别为16.1%和4.36%,这表明Pt NWs/C作为阴极催化剂在放大后的膜电极组件(MEA)里表现出较好的催化活性,但与商业催化剂相比其性能与均一性还有待提高。该研究可为Pt NWs/C催化剂放大制备提供依据,同时可为后续的基于Pt NWs/C的电堆的耐久性测试和车载应用奠定基础。  相似文献   

13.
Data on the performance of a direct borohydride fuel cell (DBFC) equipped with an anion exchange membrane, a Pt–Ru/C anode and a Pt/C cathode are reported. The effect of oxidant (air or oxygen), borohydride and electrolyte concentrations, temperature and anode solution flow rate is described. The DBFC gives power densities of 200 and 145 mW cm−2 using ambient oxygen and air cathodes respectively at medium temperatures (60 °C). The performance of the DBFC is very good at low temperatures (ca. 30 °C) using modest catalyst loadings of 1 mg cm−2 for anode and cathode. Preliminary data indicate that the cell will be stable over significant operating times.  相似文献   

14.
This paper reports the incorporation of a cluster-like RuxSey as a methanol tolerant cathode catalyst in a laminar flow fuel cell. The effect on cell performance of several concentrations of methanol in the cathode stream was investigated for the RuxSey catalyst and compared to a conventional platinum catalyst. While the Pt catalyst exhibited up to ∼80% drop in power density, the RuxSey catalyst showed no decrease in performance when the cathode was exposed to methanol. At several methanol concentrations the RuxSey catalyst performed better than the Pt catalyst. This demonstration of a methanol tolerant catalyst in a laminar flow fuel cell opens up the way for further miniaturization of the cell design and simplification of its operation as the need for an electrolyte stream to prevent fuel crossover has been eliminated.  相似文献   

15.
A silicon-based micro direct methanol fuel cell (μDMFC) for portable applications has been developed and its electrochemical characterization carried out in this study. Anode and cathode flowfields with channel and rib width of 750 μm and channel depth of 400 μm were fabricated on Si wafers using the microelectromechanical system (MEMS) technology. A membrane-electrode assembly (MEA) was specially fabricated to mitigate methanol crossover. This MEA features a modified anode backing structure in which a compact microporous layer is added to create an additional barrier to methanol transport thereby reducing the rate of methanol crossing over the polymer membrane. The cell with the active area of 1.625 cm2 was assembled by sandwiching the MEA between two micro-fabricated Si wafers. Extensive cell polarization testing demonstrated a maximum power density of 50 mW/cm2 using 2 M methanol feed at 60 °C. When the cell was operated at room temperature, the maximum power density was shown to be about 16 mW/cm2 with both 2 and 4 M methanol feed. It was further found that the present μDMFC still produced reasonable performance under 8 M methanol solution at room temperature.  相似文献   

16.
This paper presents results of recent investigations to develop an optimized in-house membrane electrode assembly (MEA) preparation technique combining catalyst ink spraying and assembly hot pressing. Only easy steps were chosen in this preparation technique in order to simplify the method, aiming at cost reduction. The influence of MEA fabrication parameters like electrode pressing or annealing on the performance of hydrogen fuel cells was studied by single cell measurements with H2/O2 operation. Toray paper and carbon cloth as gas diffusion layer (GDL) materials were compared and the composition of electrode inks was optimized with regard to most favorable fuel cell performance. Commercial E-TEK catalyst was used on the anode and cathode with Pt loadings of 0.4 and 0.6 mg/cm2, respectively. The MEA with best performance delivered approximately 0.58 W/cm2, at 65 °C cell temperature, 80 °C anode humidification, dry cathode and ambient pressure on both electrodes. The results show, that changing electrode compositions or the use of different materials with same functionality (e.g. different GDLs), have a larger effect on fuel cell performance than changing preparation parameters like hot pressing or spraying conditions, studied in previous work.  相似文献   

17.
In this study, the performance of the anionic electrodes for hybrid polymer electrolyte fuel cells was improved. The anion exchange membrane (AEM) electrodes were initially characterized as the cathode on a proton exchange membrane (PEM) anode/membrane half-assembly (i.e. hybrid polymer electrolyte fuel cell). The electrode performance was improved by tailoring the ionomer distribution within the electrode structure so as to better balance the electronic, ionic, and reactant transport within the catalyst layer. An ionomer impregnation method was used to achieve a non-uniform ionomer distribution and higher performance. Traditional electrode fabrication methods (i.e. thin-film method) lead to a uniform ionomer distribution. The peak power density at 70 °C for a H2/O2 hybrid fuel cell was 44 mW cm−2 using the thin-film electrode, and 120 mW cm−2 using the ionomer impregnated electrode. A hydrophobic additive used in the catalyst layer further improved the electrode performance, giving a peak power density of 315 mW cm−2 for H2/O2 at 70 °C. Electrochemical impedance spectroscopy was used as an in situ diagnostic tool to help understand the origin of the electrode improvements. The increase in performance was attributed to improved catalyst utilization due to the creation of facile gas transport domains in the AEM electrode structure. Similarly, the AEM anode prepared by ionomer impregnation with polytetrafluoroethylene resulted in a three-fold increase in the peak power density compared to ones made by the thin-film method, which has no polytetrafluoroethylene.  相似文献   

18.
J. Guo  H. Zhang  J. Jiang  Q. Huang  T. Yuan  H. Yang 《Fuel Cells》2013,13(6):1018-1023
A passive and self‐adaptive direct methanol fuel cell (DMFC) directly fed with 20 M of methanol is developed for a high energy density of the cell. By using a polypropylene based pervaporation film, methanol is supplied into the DMFC's anode in vapor form. The mass transport of methanol from the cartridge to the anodic catalyst layer can be controlled by varying the open ratio of the anodic bipolar plate and by tuning the hydrophobicity of anodic diffusion layer. An effective back diffusion of water from the cathode to the anode through Nafion film is carried out by using an additive microporous layer in the cathode that consists of 50 wt.% Teflon and KB‐600 carbon. Accordingly, the water back diffusion not only ensures the water requirement for the methanol oxidation reaction but also reduces water accumulation in the cathode and then avoids serious water flooding, thus improving the adaptability of the passive DMFC. Based on the optimized DMFC structure, a passive DMFC fed with 20 M methanol exhibits a peak power density of 42 mW cm–2 at 25 °C, and no obvious performance degradation after over 90 h continuous operation at a constant current density of 40 mA cm–2.  相似文献   

19.
Cathode electrodes of proton exchange membrane fuel cells were fabricated by using Pt sputter deposition to increase the gravimetric power density (W mgPt−1) with reduced Pt loading. Ultra low Pt‐based electrodes having Pt loading in between 0.0011 and 0.06 mgPt cm−2 were prepared by a radio frequency (RF) sputter deposition method on the surface of a non‐catalyzed gas diffusion layer (GDL) substrate by changing the sputtering time (20, 90, 180, 1050 s). The effect of cathode Pt loading on the performance of membrane electrode assembly were investigated using polarization curve, impedance, H2 crossover and cyclic voltammetry techniques. The effect of backpressure on PEMFC performance was also investigated. Sputter1050 (0.06 mgPt cm−2) exhibited the best power density at 80 °C cell temperature and without backpressure for H2/O2, 100 %RH (297 mW cm−2 and 5 W mgPt−1 at 0.6 V). On the other hand sputter90 (0.005 mgPt cm−2) showed the peak gravimetric power density (15 W mgPt−1 and 75 mW cm−2 at 0.6 V). The Pt utilization efficiency increased as the Pt loading decreased. Sputter20 and sputter90 electrodes yielded insufficient electrochemical surface area (ECSA), higher charge transfer and ohmic resistance, but sputter180 and sputter1050 yielded sufficient ECSA and lower charge transfer and ohmic resistance.  相似文献   

20.
Proton-conducting polymer membranes are used as an electrolytes in proton exchange membrane fuel cells (PEMFCs). The most widely used commercially available membrane electrolytes are perfluorosulfonic acid polymers, an expensive class of ionomers. In this study, the potential of polymer blends derived from sulfonated polystyrene ethylene butylene polystyrene (SPSEBS) and sulfonated polysulfone (SPSU) for use in electrolyte applications was examined. Although SPSEBS by itself exhibits good conductivity, flexibility, and chemical stability, it has poor mechanical stability. So, in an effort to improve the mechanical properties of SPSEBS while maintaining its good conductivity, it was blended with SPSU. SPSEBS/SPSU blends were therefore prepared by a solvent evaporation method, and the resulting blend membranes were characterized in terms of conductivity, ionic exchange capacity, and water uptake. Sulfonation was confirmed and the crystallinity of the blend membranes was studied by FTIR spectroscopy and X-ray diffraction. The morphologies of the membranes were studied by scanning electron microscope (SEM), and their thermal stabilities by TGA and DSC. Finally, the mechanical strength of SPSEBS was studied using a UTM (universal testing machine). This paper presents the results of recent investigations aimed at developing an optimized in-house membrane electrode assembly (MEA) preparation technique combining catalyst ink spraying and assembly hot pressing. Easy steps were chosen for this preparation technique in order to simplify the method, thus minimizing costs. The influence of MEA fabrication parameters like electrode pressing or annealing on the performance of the hydrogen fuel cell was studied by performing single cell measurements during H2/O2 operation. Carbon cloth was used as a gas diffusion layer (GDL), and the composition of the electrode ink was optimized to maximize fuel cell performance. A commercial E-TEK catalyst was used for the anode and cathode, with Pt loadings of 0.125 and 0.37 mg/cm2, respectively. The MEA with the best performance delivered approximately 0.50 W/cm2 at room temperature. The methanol permeability and the selectivity ratio strongly influenced DMFC performance. Both direct methanol fuel cells (DMFCs) and PEMFCs are discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号