首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以浇注型聚酯或聚醚聚氨酯弹性体为柔性材料,铁或铝金属为刚性材料,采用5种粘合剂,进行了粘接实验。实验数据表明,聚氨酯弹性体硬度较高时,柔性材料与金属粘接的剥离强度最高可达31 kN/m,聚酯型聚氨酯弹性体与金属粘接比聚醚型聚氨酯弹性体的粘接性能好。  相似文献   

2.
简述了涂料印花的特点及国内外涂料印花粘合剂的研究现状与发展趋势。详述了新型环保粘合剂(如用无甲醛交联单体、水性聚氨酯、有机硅等进行改性的聚丙烯酸酯类印花粘合剂和水性聚氨酯类印花粘合剂)的聚合体系,具体介绍了聚合工艺的改进,包括核壳乳液聚合、互穿网络乳液聚合以及辐射引发聚合等,对涂料印花粘合剂的研究方向进行了分析。  相似文献   

3.
新型环保涂料印花粘合剂的研究进展   总被引:2,自引:0,他引:2  
简述了国内外涂料印花粘合剂的研究状况和发展趋势,介绍了制备新型环保涂料印花粘合剂的聚合体系[包括采用无甲醛交联单体、聚氨酯和有机硅等对丙烯酸酯类印花粘合剂进行改性以及合成WPU(水性聚氨酯)印花粘合剂等]和聚合工艺上的改进措施[包括无皂乳液聚合、核壳乳液聚合、互穿聚合物网络(IPNs)乳液聚合以及辐射引发聚合等],并指出了今后涂料印花粘合剂的发展方向。  相似文献   

4.
将顺丁橡胶、废胶粉与用作公共网络的单体混合物经硫化制备出了顺丁橡胶/公共网络混合物/废胶粉共轭三组分互穿聚合物网络弹性体。结果表明,当各组分用量分别是顺丁橡胶100份、公共网络混合物9份(2种单体的摩尔比为1/1)、炭黑45份、废橡胶(粒径80目)用量40份时,弹性体合金的物理机械性能最优,耐磨性能、加工性能以及填料的分散性都得到了明显改善。  相似文献   

5.
介绍了聚氨酯弹性体磁带粘合剂的合成工艺,讨论了原料含水量、反应温度、n(NCO):n(OH)及聚酯分于量对聚氨酯合成的影响。  相似文献   

6.
将乙烯基单体通过自由基聚合反应而合成的接枝聚酯聚合物多元醇(GPOPs),应用于聚酯型微孔聚氨酯弹性体(PES-MPUE)中。实验结果表明,这种方法可以有效地改善聚酯型微孔聚氨酯弹性体的泡孔结构、表面性能,提高材料的硬度、强度等物理力学性能。  相似文献   

7.
制备了不变黄HDI(1,6-己二异氰酸酯)型聚酯聚氨酯/聚甲基丙烯酸甲酯(PMMA)互穿网络胶粘剂,探讨了甲基丙烯酸甲酯(MMA),单体用量、引发剂用量、反应温度和反应时间等条件对其胶液粘度和初粘力的影响,并成功作为制鞋工业用胶。  相似文献   

8.
简单介绍了热塑性聚氨酯弹性体的合成、性能及其在共混、补强、互穿网络等方面的最新发展。  相似文献   

9.
有机硅聚醚嵌段聚氨酯乳液的研究.粘接,2004,25(2):1-5.聚氨酯橡胶补剂的研制.粘接,2004,25(2):13-15.聚酯型阳离子水性聚氨酯乳液的合成研究.粘接,2004,25(2):19-22.聚氨酯/聚(甲基丙烯酸甲酯-苯乙烯)半互穿网络形成的研究.绝缘材料,2004(2):28-31.制备γ-异氰酸酯丙基三乙氧基硅烷的新方法.化学与生物工程,2004(2):16-17.柔性大开孔聚氨酯泡沫的制备.化学与生物工程,2004(2):35-37.低不饱和度聚醚PU弹性体力学性能的研究.聚氨酯及其弹性体,2004(1):1-5.亲水单体对聚氨酯丙烯酸复合乳液性能的影响.精细化工,2004,21(4):292-296.环氧乙烷的…  相似文献   

10.
用X射线光电子能谱(XPS)分析了以聚氨酯(PUR)为第一网络的PUR/环氧树脂/聚-β-丙二醇二丙烯酸酯互穿聚合物网络(PUR/EP/PPGDA IPN)弹性体的表面元素分布,并用氩离子刻蚀进行材料内部元素分析。结果表明,三元IPN弹性体中主要元素C、O、N、Cl在材料表面和内部分布明显不一致,这种差异表明形成IPN后,三种组分聚合物在材料的表面和内部的分布是不均匀的,这种不均匀性与三种聚合物的比例有关。  相似文献   

11.
Cotton and cotton/polyester blends treated with phosphorus-nitrogen polymers and poly-(vinyl bromide) for flame retardance were examined in the electron microscope. A considerable amount of the poly(vinyl bromide) was retained by the cotton fibers. Expansion studies indicated that the poly(vinyl bromide) acted either as a morphologic adhesive or as a nonpolar matrix impervious to penetration by methacrylate before swelling.  相似文献   

12.
This publication shows how the kind of crosslinking agents and their contents influence important properties of acrylic based pressure‐sensitive adhesive (PSA) dispersions such as tack, adhesion and cohesion. Synthesized PSAs based on acrylic polymers, containing 2‐ethylhexyl acrylate, butyl acrylate, vinyl acetate, styrene and acrylic acid are used in the preparation of self‐adhesive dispersions used as coating of polyethylene foams and poly(vinyl chloride) and polyester foils. © 2003 Society of Chemical Industry  相似文献   

13.
热熔胶研究进展   总被引:1,自引:1,他引:0  
从传统型和可生物降解型两个方面介绍了热熔胶的研究进展。根据热熔胶所用基体树脂类型,传统型热熔胶分为聚氨酯(PU)类、聚酰胺(PA)类和乙烯/醋酸乙烯(EVA)类等,可生物降解型热熔胶分为聚乳酸型、聚酯酰胺型、聚羟基烷酸酯型和天然高分子型等。传统型热熔胶由于其结构的不可降解性,对环境造成了较大的危害;而可生物降解型热熔胶,符合环保理念,潜在市场大。在查阅国内外文献的基础上,对可生物降解型热熔胶提出了今后的研究和发展方向。  相似文献   

14.
复合金属板用高强度耐腐蚀聚酯型热熔胶的研制   总被引:1,自引:1,他引:0  
按照m[氯乙烯醋酸乙烯酯(VC-VAc)]∶m[二月桂酸二丁基锡(DBTDL)]∶m[邻苯二甲酸二丁酯(DBP)]∶m(硬脂酸钙)=50∶3∶4∶1比例配制复合氯醋树脂,然后以此作为聚酯热熔胶的改性剂。结果表明:当w(复合氯醋树脂)=30%(相对于热熔胶而言)时,改性热熔胶的粘接强度为7.6 MPa,Tg提高到91.2℃;改性热熔胶在10%醋酸或40%NaOH溶液中浸泡48 h后未发生剥离现象,其最大粘接强度分别为6.68 MPa和6.39 MPa;经5%NaCl喷雾24 h或10%Na2CO3溶液浸泡48 h后,其性能最接近未浸泡试样;该高性能热熔胶适用于双金属板的热复合。  相似文献   

15.
将聚酯织物先后在水性聚氨酯胶黏剂溶液以及由乙烯基三乙氧基硅烷改性纳米二氧化硅、2-甲基丙烯酰氧乙基三甲基氯化铵、聚乙二醇二甲基丙烯酸酯、三羟甲基丙烷三丙烯酸酯和2-羟基-2-甲基苯丙酮组成的乙醇混合溶液中浸泡,再经紫外固化,得到基于聚酯织物的无机有机复合超亲水涂层。红外光谱、扫描电镜和接触角测试结果确认了织物表面超亲水涂层的形成,水滴在织物表面完全铺展的时间最短仅为301 ms。利用超亲水聚酯织物可以进行油水分离,其分离效率达99.4%。在经过50次循环分离后,其分离效率仍可保持在98%以上。  相似文献   

16.
The inherited adhesion limitation of polyester and vinyl ester resin-based pultruded GFRP makes pultrusions difficult to bond, especially when a thixotropic adhesive is used. While such an adhesive is necessary for gap filling, it has a limited wettability. Therefore, coating the adherend with low-viscosity epoxy resin, prior to bonding, improves wetting and hence increases joint strength. The paper describes the experimental methodology to achieve this, using double lap-shear (DLS) joints with various materials combinations. A significant strength improvement was reached as a result of coating the inner adherend in conjunction with using a “high adhesion” outer adherend. To further understand the effect of coating, numerical stress analysis was undertaken, including preliminary micro-models representing the composite/adhesive interface as well as overall DLS models.  相似文献   

17.
叙述了用乙烯基酯不饱和聚酯树脂制作虎克-16型玻璃钢电解槽盖的施工方法,介绍了乙烯基酯不饱和聚酯树脂的性能。  相似文献   

18.
以玻璃化转变温度较低的共聚酯制备了聚酯热熔胶。研究结果表明:聚酯热熔胶对丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚碳酸酯(PC)等极性塑料与金属材料具有良好的粘接性能,稳定后的剥离强度大于100N/25mm;同时,具有良好的耐老化性能及粘接持久性。聚酯热熔胶可取代国外产品用于电子行业用极性聚合物与金属材料粘接。  相似文献   

19.
Model compound reactions of isocyanate sources with alcohols and an epoxy resin indicated that the major reaction product from the phenol-blocked methylenebisphenylene diisocyanate and epoxy resin-based adhesive dip for poly(ethylene terephthalate) cord was a polyurethane. A significant portion of the hydroxyl groups required for the reaction were formed by ring opening of the epoxide groups of the resin. The reaction rate for the unblocking of the isocyanate source was inhibited in the presence of polyester yarn finishes containing sulfated esters of fatty acids. Also, compounds containing carboxylic acid groups and sulfonic acid groups inhibited the unblocking step. Amines and their salts catalyzed the unblocking step. A mechanism for the polyurethane adhesive–polyester bond based upon physical interaction is postulated. The presence of certain nonsulfated ester finishes permitted good wetting of the polyester surface and penetration of the adhesive into the polyester. By contrast, sulfated ester finishes result in poor wetting and penetration by the adhesive on the polyester. By contrast, sulfated ester finishes result in poor wetting and penetration by the adhesive on the polyester. The latter finishes resulted in a weak boundary layer between the adhesive and the cord.  相似文献   

20.
探讨了浸胶液在聚酯帘子线与橡胶之间的作用机理以及增粘作用。总结了聚酯一浴、二浴浸胶液、纺丝后加工浸胶处理、等离子体及共聚改性、纺丝技术的发展等对提高聚酯与橡胶粘接强度的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号