首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
以煅前石油焦为原料,采用KOH化学活化法制备超级电容器用高比表面积活性炭,通过考察碱炭比、活化温度、活化时间和原料预处理方式对活性炭结构和性能的影响,探讨了影响高比表面积活性炭结构和性能的主要因素,确立了制备超级电容器用高比表面积活性炭的最佳工艺条件。  相似文献   

2.
中间相沥青微球的活化   总被引:5,自引:0,他引:5  
用KOH为活化剂,在不同活化条件下对中间相青微球进行活化,制备出比表面积为3182m^2/g,总孔容为2.45mL/g,苯吸附值为1320mg/g的高比表面积活性炭微球。研究了了KOH配比、活性温度和活化时间对活性炭微球的收率、比表面积和苯吸附值的影响。研究表明:随着KOH配比量或活化温度的提高,活化收率下降,活性炭微球的比表面积和七吸附值升高到一定值后下降;延长活化时间使活化反应进行完全,活性炭微球的活化收率、比表面积和苯吸附值仅有轻微变化。  相似文献   

3.
天然气作为环境友好型燃料,在我国能源消费结构的比例日益提高。吸附存储天然气技术(ANG)是对天然气高效存储的新技术,高容量吸附材料的制备是技术核心。综合考虑吸附能力、生产成本以及循环寿命等因素,高比表面积活性炭被认为是最有推广前景和应用价值的天然气存储吸附剂。KOH活化法被认为是制备高比表面积活性炭的有效方法。目前,该法存在的问题如下:首先,实验室研究多采用保护气控制烧蚀程度,这对于工业化生产高比表面积活性炭的指导意义并不明显。其次,原料性质对KOH活化法的影响鲜有研究,造成难以判断合适的原料预处理方法。最后,由于KOH加入量大,对设备腐蚀和环境破坏严重。  相似文献   

4.
天然气作为环境友好型燃料,在我国能源消费结构的比例日益提高。吸附存储天然气技术(ANG)是对天然气高效存储的新技术,高容量吸附材料的制备是技术核心。综合考虑吸附能力、生产成本以及循环寿命等因素,高比表面积活性炭被认为是最有推广前景和应用价值的天然气存储吸附剂。KOH活化法被认为是制备高比表面积活性炭的有效方法。目前,该法存在的问题如下:首先,实验室研究多采用保护气控制烧蚀程度,这对于工业化生产高比表面积活性炭的指导意义并不明显。其次,原料性质对KOH活化法的影响鲜有研究,造成难以判断合适的原料预处理方法。  相似文献   

5.
以沥青焦为原料,KOH为活化剂在不同的工艺条件下制备了双层电容器用活性炭电极材料。分别考察了活化剂用量、活化时间、以及加入Cu、Ni催化活化等工艺条件对活性炭孔结构及作为双电层电容器电极的电化学性能的影响。结果表明:在实验范围内增加KOH用量及活化时间,活性炭的比表面积和比电容增加,比电容最高达到247F/g。添加Cu、Ni催化活化后活性炭的比表面积及比电容增加,高功率放电性能明显改善。  相似文献   

6.
以太西无烟煤为原料,KOH/NaOH为活化剂,在碱炭比为4:1,800 C活化1 h的条件下,制备高比表面积活性炭.采用N2吸附法对活性炭的比表面积、孔容和孔结构进行了表征,并考察了KOH/NaOH协同活化对活性炭比表面积及孔结构的影响.随着活化剂组成中KOH比例的增加,活性炭的比表面积、孔容、收率增大,孔径分布变窄,表观密度降低,KOH和NaOH作为活化剂有着不同的活化机理,合理地调节活化剂中两组分的比例,可以起到协同活化的作用,能对活性炭的比表面积、孔结构、收率及表观密度等物化性能进行有效的调控.  相似文献   

7.
以双电层电容器电极材料为应用背景,选择低灰无烟煤为原料,采用KOH化学活化性,在不同的工艺条件下制备了无烟煤基高比表面积活性炭,通过正交试验法研究了KOH与无烟煤的质量比、活化温度及活化时间对所制得的高比表面积活性炭比电容的影响。结果表明:在KOH与无烟煤的质量比为5,活化温度为750℃,活化时间为1.5h时可制得比电容达62.5F/g的高比表面积活性炭。由它组装的模拟双电层电容器具有良好的充放电性能和循环性能。  相似文献   

8.
研究了5种不同制备方法对烟用活性炭性质的影响,表征了其比表面积、表面形貌和酸碱基团,并将其应用到卷烟滤嘴中。比较了不同方法制备的活性炭对烟气主要有害成分释放量的影响。结果表明:微波加热会对活性炭表面造成破坏,降低比表面积;KOH活化法制备的竹质活性炭优于水蒸气活化法;马弗炉KOH法经2次活化制备的活性炭对主流烟气中主要有害成分吸附效果最佳。  相似文献   

9.
欧阳曙光  付乐乐  刘凤  许斌  王志  许杰 《炭素技术》2012,31(2):17-20,27
采用焦化除尘灰为原料,分别用水蒸气和KOH为活化剂制备焦化除尘灰基活性炭,并对所制的活性炭进行碘吸附值、BET比表面积、孔径分布、孔容以及表面形貌测试。实验结果表明,采用KOH活化法制备的活性炭吸附性能强于采用水蒸气活化法制备的活性炭。氢氧化钾活化法制备的活性炭为中孔孔型,BET比表面积达275.51 m2/g。  相似文献   

10.
以中间相炭微球为原料,KOH为活化剂,采用微波加热化学活化法在不同条件下制备出高比表面积活性炭,考察了活化前后中间相炭微球的结构变化与不同活化条件对炭微球性能的影响.研究表明:活化后中间相炭微球的石墨微晶结构被破坏,所制得的活性炭是无定形组织.活性炭比表面积和孔容随着KOH/MCMB的增大先增大后减小.KOH/MCMB较小时,比表面积和孔容随活化时间的延长达到最大值后不再发生变化,在KOH/MCMB较大时,比表面积和孔容随活化时间的延长先增大后减小.  相似文献   

11.
以除尘灰分离炭粉为原料,确定了制备颗粒活性炭的最佳工艺,并对制备的颗粒活性炭进行不同的改性处理和对不同有机蒸气的吸附实验。利用X—光电子能谱仪分析了改性处理后的表面化学性质。吸附实验证明,活性炭的比表面积、表面化学性质和有机物的性质对吸附过程产生影响。  相似文献   

12.
Spherical carbons have been prepared through hydrothermal treatment of three carbohydrates (glucose, saccharose and cellulose). Preparation variables such as treatment time, treatment temperature and concentration of carbohydrate have been analyzed to obtain spherical carbons. These spherical carbons can be prepared with particle sizes larger than 10 μm, especially from saccharose, and have subsequently been activated using different activation processes (H3PO4, NaOH, KOH or physical activation with CO2) to develop their textural properties. All these spherical carbons maintained their spherical morphology after the activation process, except when KOH/carbon ratios higher than 4/1 were used, which caused partial destruction of the spheres. The spherical activated carbons develop interesting textural properties with the four activating agents employed, reaching surface areas up to 3100 m2/g. Comparison of spherical activated carbons obtained with the different activating agents, taking into account the yields obtained after the activation process, shows that phosphoric acid activation produces spherical activated carbons with higher developed surface areas. Also, the spherical activated carbons present different oxygen groups’ content depending on the activating agent employed (higher surface oxygen groups content for chemical activation than for physical activation).  相似文献   

13.
采用沥青焦为原料,以KOH和NaOH活化剂制备出不同碱炭质量比(R)系列活性炭。利用X射线衍射(XRD)和X射线光电子能谱(XPS)表征出所制活性炭的石墨层结构和表面化学性质,并用氮气吸附和脱附等温线计算出BET比表面积、DFT孔径分布及孔容。实验结果表明,与NaOH活化剂相比,KOH活化剂所制活性炭石墨层破坏更明显,表面含氧官能团也明显增加。当R=5时,KOH活化剂所制样品BET比表面积高达2939m^2/g,孔容为1.43cm^2/g;而NaOH活化剂所制样品BET比表面积和孔容分别只有1098m^2/g、0.53cm^2/g。  相似文献   

14.
高比表面积煤质活性炭的制备与活化机理   总被引:5,自引:0,他引:5  
王秀芳  田勇  张会平 《化工学报》2009,60(3):733-737
以煤为原料,采用KOH活化法制备了高比表面积活性炭,分别考察了活化温度、浸渍比和活化时间等工艺参数对活性炭吸附性能的影响;测试了高比表面积活性炭在-196℃对N2的吸附等温线、比表面积和孔径分布。结果表明,当活化工艺参数为活化温度900℃,浸渍比4,活化时间1.5 h的条件下可以制得较好的高比表面积活性炭产品,其比表面积为3135 m2·g-1,孔容为1.72 cm3·g-1,碘吸附值为2657 mg·g-1;采用扫描电子显微镜观察了高比表面积活性炭的微观结构,采用气体分析仪检测了活化过程中的尾气成分,提出了高比表面积活性炭的活化机理。  相似文献   

15.
NaOH活化法制备煤基活性炭的研究   总被引:2,自引:0,他引:2  
以焦作无烟煤为原料,NaOH为活化剂,采用化学活化法制备煤基活性炭,分别考察了碱炭比、活化温度和活化时间等工艺参数对活性炭吸附性能和收率的影响;利用低温N2吸附法对活性炭的比表面积、总孔容及孔径分布进行了表征.结果表明,在碱炭比为4,活化温度为750℃和活化时间为1 h的条件下,可以制得比表面积为2 483 m2/g,总孔容为1.41 cm3/g,碘吸附值为2 530 mg/g,亚甲蓝吸附值为418 mg/g的煤基活性炭.  相似文献   

16.
Activated carbons have been prepared from petroleum cokes by the combination of a chemical treatment with HClO4 or H2O2 and a chemical activation with KOH at a constant KOH/coke ratio of 3/1. The influence of different chemical treatments on the properties of the activated carbon precursors and final carbons activated with KOH was invested by using XRD, FTIR, and BET techniques. XRD results indicated that the value of interplanar distance d002 increased by chemical treatment and the disappearance of the peak corresponding to 0 0 2 faces correlated to high specific surface area. FTIR studies showed that chemical modification promoted the formation of surface oxygen functionalities. Significant effects on BET surface area, pore texture and iodine adsorption capacity were evidenced. The results show that chemical modification prior to activation dramatically increased the BET surface area and total pore volume of the resulting activated carbon. Modified petroleum coke based activated carbon with chemical activation had higher specific surface area (2336 m2/g) and better iodine adsorption value (1998 mg/g).  相似文献   

17.
Chemical activation of carbons is currently a very common method for obtaining activated carbons with very high surface areas. KOH is one of the most effective agents employed for this purpose. However, the reaction mechanism of this kind of activation it is not yet completely elucidated, although some models have been proposed. In this paper, an activated charcoal was obtained from a lignocellulosic material by impregnation with different amounts of KOH. The activation process was studied by X-ray photoelectron spectroscopy and X-ray diffraction. These techniques point to the formation of different potassium compounds at the carbon surface (mainly K2CO3 and different oxides) and show the dependence between surface area development in the carbons and the amount of K2CO3 formed during the activation process.  相似文献   

18.
活性炭制备工艺条件对其比表面积的影响   总被引:2,自引:1,他引:2  
以煤沥青为原料,KOH为活化剂制备活性炭。应用正交设计研究了制备工艺中炭化温度(A)、炭化时间(B)、活化温度(C)和活化时间(D)四因素对活性炭比表面积的的影响。结果表明:B>D>A>C,并结合KOH活化法的作用机理,分析了原因。  相似文献   

19.
Carbonaceous adsorbents with controllable pore sizes derived from carbonized pistachio shells (i.e., char) were prepared by the KOH activation and steam activation methods in this work. The pore properties including the BET surface area, pore volume, pore size distribution, and pore diameter of these activated carbons were characterized by the t-plot method based on N2 adsorption isotherms. Through varying the KOH/char ratios from 0.5 to 3, the KOH-activated carbons exhibited BET surface areas ranging from 731 to 1687 m2/g with a similar micropore content (80–92%). The carbons activated by steam at 830 °C for 2 h had a BET surface area of 821 m2/g with the micropore content of 42%. The micropore/total pore volume ratio (Vmicro/Vpore) and average pore size (Dpore) were independent of the KOH/char ratio, revealing that KOH activation is a powerful method in developing and controlling the number of micropores with a very similar pore size distribution. The adsorption equilibria and kinetics of methylene blue, basic brown 1, acid blue 74, 2,4-dichlorophenol, 4-chlorophenol, and phenol from water on all activated carbons at 30 °C were investigated to demonstrate the fact that adsorption of organics is not only dependent upon the BET surface area but is also determined by the relative size between pores and molecules. The adsorption isotherms were subjected to the model fitting according to Langmuir and Freudlich equations. By comparing the projected area of adsorbates, the surface coverage of phenols is about 3.6 times of that of dyes (based on unit gram of activated carbon). The Elovich equation was found to suitably describe the adsorption process of all KOH-activated carbons while the adsorption behavior on the steam-activated carbon was reasonably fitted with the intraparticle diffusion model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号