首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this paper, we investigated the functional imaging properties of magnetic microspheres composed of magnetic core and CdTe quantum dots in the silica shell functionalized with folic acid (FA). The preparation procedure included the preparation of chitosan-coated Fe3O4 nanoparticles (CS-coated Fe3O4 NPs) prepared by a one-pot solvothermal method, the reaction between carboxylic and amino groups under activation of NHS and EDC in order to obtain the CdTe-CS-coated Fe3O4 NPs, and finally the growth of SiO2 shell vent the photoluminescence (PL) quenching via a Stöber method (Fe3O4-CdTe@SiO2). Moreover, in order to have a specific targeting capacity, the magnetic and fluorescent bifunctional microspheres were synthesized by bonding of SiO2 shell with FA molecules via amide reaction (Fe3O4-CdTe@SiO2-FA). The morphology, size, chemical components, and magnetic property of as-prepared composite nanoparticles were characterized by ultraviolet-visible spectroscopy, fluorescent spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning transmission electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM), respectively. The results show that the magnetic and fluorescent bifunctional microspheres have strong luminescent which will be employed for immuno-labeling and fluorescent imaging of HeLa cells.  相似文献   

2.
Micrometer‐sized superparamagnetic poly(styrene–glycidyl methacrylate)/Fe3O4 spheres were synthesized by two‐stage dispersion polymerization with modified hydrophobic Fe3O4 nanoparticles, styrene (St), and glycidyl methacrylate (GMA). The morphology and properties of the magnetic Fe3O4–P (St‐GMA) microspheres were examined by scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, thermogravimetric analysis, and attenuated total reflectance. The average size of the obtained magnetic microspheres was 1.50 μm in diameter with a narrow size distribution, and the saturation magnetization of the magnetic microspheres was 8.23 emu/g. The magnetic Fe3O4–P (St‐GMA) microspheres with immobilized iminodiacetic acid–Cu2+ groups were used to investigate the adsorption capacity and selectivity of the model proteins, bovine hemoglobin (BHb) and bovine serum albumin (BSA). We found that the adsorption capacity of BHb was as high as 190.66 mg/g of microspheres, which was 3.20 times greater than that of BSA, which was only 59.64 mg/g of microspheres as determined by high‐performance liquid chromatography. With a rather low nonspecific adsorption, these microspheres have great potential for protein separation and purification applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43005.  相似文献   

3.
In this article, conductive and magnetic nanocomposites composed of polypyrrole (PPy), magnetite (Fe3O4) nanoparticles (NPs), silver (Ag) NPs, have been successfully synthesized with a two step process. First, the PPy/Fe3O4 was prepared by the ultrasonic in situ polymerization. Next, the PPy/Fe3O4/Ag was synthesized through the electrostatic adsorption. The products were characterized by fourier‐transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM), Thermogravimetric (TG), conductivity and magnetization analysis, and the results showed that the Ag NPs with the good conductivity coated uniformly on the surface of PPy/Fe3O4 and improved the conductivity of PPy/Fe3O4/Ag composites. In addition, as compared with PPy/Fe3O4, PPy/Fe3O4/Ag composites also have the excellent electro‐magnetic property and enhanced thermostability. POLYM. COMPOS., 35:450–455, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
Novel mixed matrix membranes (MMMs) were fabricated using Fe3O4, and Al2O3 nanoparticles (NPs) were added to the polysulfone (PSf) and N-methylpyrrolidone (NMP) solution. The nanocomposite membranes were fabricated using the NIPS (non-solvent induced phase separation) method. In order to create preferential permeation pathways for water across the MMMs, membrane formation is accomplished with an external magnetic field. Using magnetic casting cause the targeted placement of NPs in the best location and orientation. The performance of the prepared membranes was examined in terms of pure water flux and fouling parameters. Magnetic casting considerably increased pure water flux and decreased the total resistance of the optimum mixed matrix membrane, which contains 0.2% wt. of Fe3O4 NPs to 1175 L/m2h and 13.4 * 1011 (m−1), respectively. This is explained by the ordering of magnetic nanoparticles on the membrane sub-layer cast under the magnetic field of 500 mT, which changed the sub-layer structure. Less rough membrane surface of the mixed matrix membranes offered preferable anti-fouling properties against fouling by BSA proteins. The characterization of fabricated membranes was carried out using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), energy dispersive X-ray (EDX), and water contact angle measurement methods.  相似文献   

5.
Magnetic spindle-like Fe3O4 mesoporous nanoparticles with a length of 200 nm and diameter of 60 nm were successfully synthesized by reducing the spindle-like α-Fe2O3 NPs which were prepared by forced hydrolysis method. The obtained samples were characterized by transmission electron microscopy, powder X-ray diffraction, attenuated total reflection fourier transform infrared spectroscopy, field emission scanning electron microscopy, vibrating sample magnetometer, and nitrogen adsorption-desorption analysis techniques. The results show that α-Fe2O3 phase transformed into Fe3O4 phase after annealing in hydrogen atmosphere at 350°C. The as-prepared spindle-like Fe3O4 mesoporous NPs possess high Brunauer-Emmett-Teller (BET) surface area up to ca. 7.9 m2 g-1. In addition, the Fe3O4 NPs present higher saturation magnetization (85.2 emu g-1) and excellent magnetic response behaviors, which have great potential applications in magnetic separation technology.  相似文献   

6.
In this research, the controlled release of proteins from magnetite (Fe3O4)–chitosan (CS) nanoparticles exposed to an alternating magnetic field is reported. Fe3O4–CS nanoparticles were synthesized with sodium tripolyphosphate (TPP) molecules as a crosslinking reagent. Bovine serum albumin (BSA) was used as a model protein, and its controlled release studied through the variation of the frequency of an alternating magnetic field. The results show the successful coating of CS and BSA on the Fe3O4 nanoparticles with an average diameter of 50 nm. Intermolecular interactions of TPP with CS and BSA were confirmed by Fourier transform infrared spectroscopy. The application of low‐frequency alternating magnetic fields to such magnetic CS nanoparticles enhanced the protein release properties, in which the external magnetic fields could switch on the unloading of these nanoparticles. We concluded that enhanced BSA release from nanoparticles exposed to an alternating magnetic field is a promising method for achieving both the targeted delivery and controlled release of proteins. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43335.  相似文献   

7.
We report in vitro and in vivo magnetic resonance (MR) imaging of C6 glioma cells with a novel acetylated 3-aminopropyltrimethoxysilane (APTS)-coated iron oxide nanoparticles (Fe3O4 NPs). In the present study, APTS-coated Fe3O4 NPs were formed via a one-step hydrothermal approach and then chemically modified with acetic anhydride to generate surface charge-neutralized NPs. Prussian blue staining and transmission electron microscopy (TEM) data showed that acetylated APTS-coated Fe3O4 NPs can be taken up by cells. Combined morphological observation, cell viability, and flow cytometric analysis of the cell cycle indicated that the acetylated APTS-coated Fe3O4 NPs did not significantly affect cell morphology, viability, or cell cycle, indicating their good biocompatibility. Finally, the acetylated APTS-coated Fe3O4 nanoparticles were used in magnetic resonance imaging of C6 glioma. Our results showed that the developed acetylated APTS-coated Fe3O4 NPs can be used as an effective labeling agent to detect C6 glioma cells in vitro and in vivo for MR imaging. The results from the present study indicate that the developed acetylated APTS-coated Fe3O4 NPs have a potential application in MR imaging.  相似文献   

8.
Magnetite (Fe3O4) nanoparticles prepared using hydrothermal approach were employed to study their potential application as magnetic resonance imaging (MRI) contrast agent. The hydrothermal process involves precursors FeCl2·4H2O and FeCl3 with NaOH as reducing agent to initiate the precipitation of Fe3O4, followed by hydrothermal treatment to produce nano-sized Fe3O4. Chitosan (CTS) was coated onto the surface of the as-prepared Fe3O4 nanoparticles to enhance its stability and biocompatible properties. The size distribution of the obtained Fe3O4 nanoparticles was examined using transmission electron microscopy (TEM). The cubic inverse spinel structure of Fe3O4 nanoparticles was confirmed by X-ray diffraction technique (XRD). Fourier transform infrared (FTIR) spectrum indicated the presence of the chitosan on the surface of the Fe3O4 nanoparticles. The superparamagnetic behaviour of the produced Fe3O4 nanoparticles at room temperature was elucidated using a vibrating sample magnetometer (VSM). From the result of custom made phantom study of magnetic resonance (MR) imaging, coated Fe3O4 nanoparticles have been proved to be a promising contrast enhanced agent in MR imaging.  相似文献   

9.
Fuan He  Dong Ma  Chiwah Leung 《Carbon》2010,48(11):3139-3144
Hybrids of graphene oxide (GO) nanosheets and surface-modified Fe3O4 nanoparticles (NPs) were fabricated by a two-step process. First, Fe3O4 was modified by tetraethyl orthosilicate and (3-aminopropyl) triethoxysilane to introduce amino groups on its surface. Second, the amino groups of Fe3O4 were reacted with the carboxylic groups of GO with the aid of 1-ethyl-3-(3-dimethyaminopropyl)carbodiimide and N-hydroxysuccinnimide to form a GO-Fe3O4 hybrid. The attachment of Fe3O4 NPs on the GO nanosheet surface was confirmed by transmission electron microscopy and Fourier-transform infrared spectroscopy. The adsorption capacity of GO-Fe3O4 for methylene blue and neutral red cationic dyes was as high as 190.14 and 140.79 mg/g, respectively. The GO-Fe3O4 hybrids could be reduced to form graphene-Fe3O4 hybrids by using NaBH4 as reducing agent and be used to prepare magnetic GO films.  相似文献   

10.
An effective method was developed to isolate toxic heavy metal ions from the aqueous solution by the magnetic nanopolymers. The magnetic sorbent was prepared with radiation‐induced crosslinking polymerization of chitosan (CS), 2‐acrylamido‐glycolic acid (AMGA), and acrylic acid (AAc), which stabilized by magnetite (Fe3O4) as nanoparticles. The formation of magnetic nanoparticles (MNPs) into the hydrogel networks was confirmed by Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, and Scanning electron microscopy, which revealed the formation of MNPs throughout the hydrogel networks. The swelling behavior of the hydrogels and magnetic ones was evaluated at different pH values. The adsorption activity for heavy metals such as Cu2+ and Co2+ by nonmagnetic and magnetic hydrogels, Fe3O4/CS/(AMGA‐co‐AAc), in terms of adsorption amount was studied. It was revealed that hydrogel networks with magnetic properties can effectively be used in the removal of heavy metal ions pollutants and provide advantageous over conventional ones. POLYM. ENG. SCI., 55:1441–1449, 2015. © 2015 Society of Plastics Engineers  相似文献   

11.
涂志江  张宝林  冯凌云  赵方圆 《化工学报》2012,63(12):4089-4095
为了获得能够在水中稳定分散,具有广泛应用前景的磁性纳米粒子,以不同分子量的聚乙烯吡咯烷酮(PVP)作为修饰剂,在聚乙二醇(PEG)中高温热分解乙酰丙酮铁(Fe(acac)3)制备了纳米Fe3O4粒子。采用X射线粉末衍射仪(XRD)、透射电镜(TEM)、高分辨透射电镜(HRTEM)、超导量子干涉仪(SQUID)、热重分析仪(TGA)、傅里叶变换红外光谱仪(FT-IR)、纳米粒度与zeta电位分析仪对样品进行了表征,并对样品在生理盐水和生理缓冲液中的稳定性进行了研究,结果表明:制备的纳米Fe3O4粒子具有高的结晶度以及单分散性,在300 K下,具有超顺磁性和较高的饱和磁化强度;PEG和PVP共同修饰于纳米Fe3O4粒子表面,为纳米Fe3O4粒子提供了良好的水分散性;制备的纳米Fe3O4粒子在生理盐水和多种生理缓冲液中能够高度溶解并稳定地分散。水中的纳米Fe3O4粒子表面呈电中性,表面修饰层的空间位阻效应是所制备的纳米粒子在水溶液中高分散的原因。  相似文献   

12.
Forward osmosis (FO) is a natural osmosis process that has attracted a significant attention due to its many advantages. However, the development of FO process depends on the development of proper draw solutions. In this work, chitosan (CS)-coated Fe3O4 nanoparticles and dehydroascorbic acid (DHAA)-coated Fe3O4 nanoparticles were successfully synthesized by co-precipitation method and their performance as draw solutes was investigated for application in FO systems. CS and DHAA could improve the surface hydrophilicity of the Fe3O4 nanoparticles. The synthesized nanoparticles were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometry (VSM) which the results presented a small size, crystalline morphology and high magnetization value for their structure as well as a good dispersion in water. Cellulose triacetate/cellulose acetate (CTA/CA)-based membranes were also prepared by immersion precipitation and used as FO membranes. The synthesized FO membranes were characterized by FESEM. The performance evaluation of synthesized nanoparticles revealed that the water flux of Fe3O4 nanoparticles capped with DHAA was higher than that of the chitosan-coated Fe3O4 nanoparticles. At the end of the process, the Fe3O4 nanoparticles were easily separated from the diluted draw solution by applying the magnetic field.  相似文献   

13.
Magnetoactive electrospun fibrous membranes consisting of polyvinylpyrrolidone (PVP), chitosan (CS) and pre-fabricated, double-layer oleic acid-coated magnetite nanoparticles (OA.OA.Fe3O4) were fabricated and evaluated as new adsorbent materials for the removal and recovery of uranium (U(VI)) from aqueous solutions. The adsorption has been investigated by batch-type experiments and the solid material has been characterized by X-ray diffraction spectroscopy (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy/energy dispersive X-ray analysis (TEM/EDX) and vibration sample magnetometry (VSM) measurements prior and after uranium adsorption. The experimental adsorption data were found to be well fitted with the Langmuir isotherm and the pseudo-second order kinetic model. The results indicate that PVP/CS/OA.OA.Fe3O4 fibrous adsorbents exhibit good adsorption properties towards U(VI) in aqueous solutions, achieving a qmax value of 0.77 mol kg−1 (183.3 mg g−1) at pH 6.0. The experiments regarding the regeneration and reuse of the magnetoactive adsorbents were carried out using Na2CO3, at pH ~11. After four cycles, the percentage relative adsorption remained stable (~100%) whereas the desorption percentage decreased from 31.9% to 21.0%. Generally, the presented results demonstrate that the incorporation of the Fe3O4 NPs has a positive effect on the adsorption efficiency of U(VI) from aquatic environments.  相似文献   

14.
《Ceramics International》2022,48(4):4886-4896
Recent studies show that the chemical composition and shape of magnetic nanoparticles (NPs) play an important role in their properties. In particular, the bimagnetic NPs display useful and in many cases, more interesting properties than single-phase NPs. In this work, we prepared Fe3O4 and CoFe2O4 cube-like NPs and bimagnetic hard/soft (CoFe2O4/Fe3O4) and soft/hard (Fe3O4/CoFe2O4) nanocomposites (core/coating) using a facile and eco-friendly co-precipitation method that allows the synthesis of the cube-like NPs at temperatures near room temperature. The phase purity and the crystallinity of the NPs with a spinel structure were confirmed by the X-ray diffraction and infrared spectra techniques. Transmission electron microscopy (TEM) images revealed that the NPs have a cubic-like shape with an average dimension of 20 nm. Energy dispersive X-ray analysis, Mössbauer spectroscopy and SQUID magnetic measurements indicated the co-existence of Fe3O4 and CoFe2O4 phases in nanocomposites. In addition, the hysteresis loops exhibited a single-phase behavior in the nanocomposites that indicates there is a good exchange-coupling interaction between the hard and soft magnetic phases. The CoFe2O4/Fe3O4 nanocomposites presented a larger saturation magnetization than the CoFe2O4 NPs that is effective for their use in magnetic hyperthermia. Finally, we studied the hyperthermia properties of samples in an alternating magnetic field with a frequency of 276 kHz and field amplitude of 13.9 kA/m. Our results showed that magnetic hyperthermia efficiency simultaneously depends on the composition of samples along with magnetic anisotropy and saturation magnetization.  相似文献   

15.
In this study, bifunctional Fe3O4@ZrO2 magnetic core–shell nanoparticles (NPs), synthesized by a simple and effective sonochemical approach, were attached to the surface of a magnetic glassy carbon electrode (MGCE) and successfully applied to the immobilization/adsorption of myoglobin (Mb) for constructing a novel biosensor platform. With the advantages of the magnetism and the excellent biocompatibility of the Fe3O4@ZrO2 NPs, Mb could be easily immobilized on the surface of the electrode in the present of external magnetic field and well retained its bioactivity, hence dramatically facilitated direct electron transfer of Mb was demonstrated. The proposed Mb/Fe3O4@ZrO2 biofilm electrode exhibited excellent electrocatalytic behaviors towards the reduction of H2O2 with a linear range from 0.64 μM to 148 μM. This presented system avoids the complex synthesis for protecting Fe3O4 NPs, supplies a simple, effective and inexpensive way to immobilize protein, and is promising for construction of third-generation biosensors and other bio-magnetic induction devices.  相似文献   

16.
Magnetic polyaniline (PANI) polymer nanocomposites (PNCs) reinforced with magnetite (Fe3O4) nanoparticles (NPs) have been successfully synthesized using a facile surface initiated polymerization (SIP) method. The chemical structures of the PANI/Fe3O4 PNCs are characterized by Fourier transform infrared (FT-IR) spectroscopy. The thermal stability of the PANI/Fe3O4 PNCs is performed by thermogravimetric analysis (TGA). Both transmission electron microscopy (TEM) and scanning electron microscopy (SEM) are used to characterize the morphologies of the PANI, Fe3O4 nanoparticles (NPs) and the PNCs. X-ray diffraction (XRD) shows a significant effect of the Fe3O4 NPs on the crystallization structure of the formed PANI. The dielectrical properties of these PNCs are strongly related to the Fe3O4 nanoparticle loadings and unique negative permittivity is observed in all the samples. Temperature dependent resistivity analysis from 50 to 290 K reveals a quasi 3-dimension variable range hopping (VRH) electron conduction mechanism for the nanocomposite samples. The PNCs do not show hysteresis loop with zero coercivity, indicating the superparamagnetic behavior at room temperature. The PNCs with 30 wt% Fe3O4 NP loading exhibit a larger positive magnetoresistance (MR = 95%) than 53% of the pure PANI.  相似文献   

17.
Fe3O4 nanoparticles (Fe3O4NPs) were prepared by chemical coprecipitation. Deep eutectic solvents (DESs) (ChCl/glycol, 1/2, n/n) were used to modify Fe3O4NPs. The obtained Fe3O4NPs and DESs–Fe3O4NPs were applied for purification of ferulic acid from wheat bran by magnetic solid-phase extraction (MSPE). The satisfactory extraction recoveries for ferulic acid (88.7%) were obtained by changing different washing and eluted solvents. The recovery of the proposed method at three spiked level analysis was 77.9–97.5%, with the relative standard deviation less than 4.5%. DESs–Fe3O4NPs showed good performance for ferulic acid and the proposed approach might offer a novel method for purifying complex samples.  相似文献   

18.
We report here a simple, efficient, practical, and novel method for the preparation of Fe3O4 nanoparticles (NPs)/CdS nanowires. The CdS nanowire/Fe3O4 NP reported here was characterized by transmission electron microscopy (TEM), X-ray Diffraction (XRD), vibrating sample magnetometer (VSM), and energy-dispersive X-ray. Cadmium diethyl dithiophosphate has been used as a 3 in 1 precursor (cadmium, sulfur, and ligand source) for the synthesis of high-quality one-dimensional Fe3O4 NPs/CdS nanowires using a simple hydrothermal method in the presence of Fe3O4 NPs in water. Photocatalytic activity studies show that the nanocomposite has good photocatalytic activity toward the photodegradation of methylene blue in an aqueous solution.  相似文献   

19.
In this study, immobilization of laccase (L) enzyme on magnetite (Fe3O4) nanoparticles was achieved, so that the immobilized enzyme could be used repeatedly. For this purpose, Fe3O4 nanoparticles were coated and functionalized with chitosan (CS) and laccase from Trametes versicolor was immobilized onto chitosan‐coated magnetic nanoparticles (Fe3O4‐CS) by adsorption or covalent binding after activating the hydroxyl groups of chitosan with carbodiimide (EDAC) or cyanuric chloride (CC). For chitosan‐coated magnetic nanoparticles, the thickness of CS layer was estimated as 1.0–4.8 nm by TEM, isoelectric point was detected as 6.86 by zeta (ζ)‐potential measurements, and the saturation magnetization was determined as 25.2 emu g?1 by VSM, indicating that these nanoparticles were almost superparamagnetic. For free laccase and immobilized laccase systems, the optimum pH, temperature, and kinetic parameters were investigated; and the change of the activity against repeated use of the immobilized systems were examined. The results indicated that all immobilized systems retained more than 71% of their initial activity at the end of 30 batch uses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Removal of dyes from the industrial discharge water is an important issue for safety of the environment. In this study, magnetic (magnetite, Fe3O4) nanoparticles were coated with chitosan (CS) and the efficiency of these chitosan coated magnetic nanoparticles (Fe3O4‐CS) for the adsorption of a reactive textile dye (Reactive Yellow 145, RY145) was examined first time in literature. TEM, XRD, and EPR results revealed that the thickness of the coat was about 2–5 nm, no phase change in the spinel structure of magnetic particles existed after coating, and particles had paramagnetic property, respectively. Adsorption of RY145 on Fe3O4‐CS nanoparticles occurs according to Langmuir model in the temperature range 25°C–45°C with a maximum adsorption capacity of 47.62 mg g?1 at 25°C, in aqueous media. Thermodynamic parameters demonstrated that the adsorption process was endothermic and spontaneous, and the maximum desorption of the dye was 80% over a single adsorption/desorption cycle. In this study, the high efficiency of the CS coated magnetic nanoparticles in the adsorption and removal of reactive dyes from water was shown on model RY145. This type of nanoparticles can be good candidates in industrial applications for the decolorization of waste waters. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号