首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the ultra-high temperature ceramics (UHTC) are a group of materials consisting of zirconium diboride or hafnium diboride plus silicon carbide, and in some instances, carbon. These materials offer a good combination of properties that make them candidates for airframe leading edges on sharp-bodied reentry vehicles. These UHTC perform well in the environment for such applications, i.e. air at low pressure. The purpose of this study was to examine three of these materials under conditions more representative of a propulsion environment, i.e. higher oxygen partial pressure and total pressure. Results of strength and fracture toughness measurements, furnace oxidation, and high velocity thermal shock exposures are presented for ZrB2 plus 20 vol.% SiC, ZrB2 plus 14 vol.% SiC plus 30 vol.% C, and SCS-9a SiC fiber reinforced ZrB2 plus 20 vol.% SiC. The poor oxidation resistance of UHTCs is the predominant factor limiting their applicability to propulsion applications.  相似文献   

2.
The thermal conductivity, thermal expansion, Youngs Modulus, flexural strength, and brittle–plastic deformation transition temperature were determined for HfB2, HfC0·98, HfC0·67, and HfN0·92 ceramics. The oxidation resistance of ceramics in the ZrB2–ZrC–SiC system was characterized as a function of composition and processing technique. The thermal conductivity of HfB2 exceeded that of the other materials by a factor of 5 at room temperature and by a factor of 2·5 at 820°C. The transition temperature of HfC exhibited a strong stoichiometry dependence, decreasing from 2200°C for HfC0·98 to 1100°C for HfC0·67 ceramics. The transition temperature of HfB2 was 1100°C. The ZrB2/ZrC/SiC ceramics were prepared from mixtures of Zr (or ZrC), SiB4, and C using displacement reactions. The ceramics with ZrB2 as a predominant phase had high oxidation resistance up to 1500°C compared to pure ZrB2 and ZrC ceramics. The ceramics with ZrB2/SiC molar ratio of 2 (25 vol% SiC), containing little or no ZrC, were the most oxidation resistant.  相似文献   

3.
Carbon/carbon (C/C) composites are considered as one of the most promising materials in structural applications owing to their excellent mechanical properties at high temperature. However, C/C composites are susceptible to high-temperature oxidation. Matrix modification and coating technology with ultra-high temperature ceramics (UHTCs) have proved to be highly effective to improve the oxidation and ablation resistance of C/C composites. In this paper, recent advances in oxidation and ablation resistance of C/C composites were firstly reviewed, with attention to oxidation and ablation properties of C/C composites coated or modified with UHTCs. Then, several new methods in improving oxidation and ablation resistance were discussed, such as by using nanostructures to toughen UHTCs coatings or carbon matrix and the combination of matrix modification and coating technology. In addition, relevant ablation tests with scaled models were also briefly introduced. Finally, some open problems and future challenges were highlighted in the development and application of these materials.  相似文献   

4.
《Ceramics International》2022,48(16):22967-22974
A novel single-source precursor was synthesized to prepare HfCxN1-x/SiC multiphase ceramics by using hafnium chloride (HfCl4), diallylamine (DAA) and polycarbosilane (PCS). We conducted an investigation of the synthesis process, polymer-to-ceramic conversion, as well as the microstructure and phase evolution of HfCxN1-x/SiC multiphase ceramics with different levels of SiC content. The results showed that the core-shell particles of HfCxN1-x-carbon were embedded homogeneously in the β-SiC matrix which is beneficial for preventing grain growth and improving oxidation resistance. Based on data from oxidation tests, the ceramics improved the oxidation temperature and remained stable at a high temperature (1500 °C) with oxidation layer formation on the surface. Due to the highly cross-linked structure without oxygen, high ceramic yield, homogeneous composition and excellent oxidation resistance of the pyrolysis product, the as-prepared precursor is a promising material for making high-performance composite ceramics.  相似文献   

5.
High-performance ZrB2-SiC-Cf composite was successfully prepared by low temperature (1450 °C) hot pressing using nanosized ZrB2 powder. Such material exhibited a non-brittle fracture feature, high work of fracture (321 J/m2) and excellent thermal shock resistance as well as good oxidation resistance. Composite incorporating carbon fibers in which the degradation of the carbon fiber was effectively inhibited through low-temperature sintering displayed remarkably improved thermal shock resistance with a critical temperature difference of 754 °C, almost twice those of the reported ZrB2-based ultra-high temperature ceramics. The thermal and chemical stability of the carbon fiber and ceramic matrix were further analyzed by thermodynamic calculation and HR-TEM analysis.  相似文献   

6.
三元层状结构陶瓷材料主要是指Mn+1AXn相,三元层状结构MAX相陶瓷材料具有金属的特性还具有陶瓷的特性,三元层状结构MAX相陶瓷材料具有较高的力学性能,良好的耐磨损性能和良好的耐腐蚀性能,并具有良好的抗高温氧化性能等,还具有良好的可加工性能。三元层状结构MAX相陶瓷材料主要有Ti3SiC2,Ti4SiC3,Ti3AlC2,Ti2AlC,Ti4AlN3和Ti2AlN等。本文主要叙述三元层状结构MAX相陶瓷材料的制备技术,物相组成,显微结构,力学性能和耐磨损性能,耐腐蚀性能和抗高温氧化性能以及其他性能等。并叙述三元层状结构MAX相陶瓷材料的研究发展现状和发展趋势。并对三元层状结构MAX相陶瓷材料的未来研究发展趋势和发展方向进行分析和预测。  相似文献   

7.
Current generation carbon–carbon (C–C) and carbon–silicon carbide (C–SiC) materials are limited to service temperatures below 1800 °C and materials are sought that can withstand higher temperatures and ablative conditions for aerospace applications. One potential materials solution is carbon fibre-based composites with matrices composed of one or more ultra-high temperature ceramics (UHTCs); the latter are intended to protect the carbon fibres at high temperatures whilst the former provides increased toughness and thermal shock resistance to the system as a whole. Carbon fibre–UHTC powder composites have been prepared via a slurry impregnation and pyrolysis route. Five different UHTC compositions have been used for impregnation, viz. ZrB2, ZrB2–20 vol% SiC, ZrB2–20 vol% SiC–10 vol% LaB6, HfB2 and HfC. Their high-temperature oxidation resistance has been studied using a purpose built oxyacetylene torch test facility at temperatures above 2500 °C and the results are compared with that of a C–C benchmark composite.  相似文献   

8.
Multi-principal component materials (MPCMs) are currently being investigated for use in high and ultra-high temperature environments. The design of oxidation resistant multi-component materials requires as input the oxidation behavior of each of the components. FactSage free energy minimization software and databases were used to calculate the equilibrium oxide phases and free energies of formation for the oxides of the Group IV, V and VI refractory metals, and their carbides, nitrides and borides. The results are summarized in Ellingham diagrams. Periodic trends were noted; Group IV elements form the most stable oxides with the highest melting temperatures (Tm), Group V elements form oxides with low Tm, and Group VI elements form gaseous oxide species. Oxygen diffusion data from literature for some of these oxides were also reviewed and summarized. The results are utilized to identify strategies for optimizing oxidation resistance of MPCMs for service at temperatures above 1700°C.  相似文献   

9.
Axially aligned fibrous monolithic ceramics present non-catastrophic fracture behavior via crack deflection and delamination along cell boundaries. However, severe in-plane anisotropy and time-consuming preparation procedures prevent their extensive promotion. The introduction of high content of weak phase components with poor oxidation resistance in weak interface destroys the excellent oxidation resistance of ceramic matrix. In this work, ZrB2-based short fibrous monolithic (SFM) ceramics with in-plane isotropic mechanical properties and excellent oxidation resistance were easily prepared by hot pressing randomly assembled short ceramic fibers. The microstructure and mechanical behavior of ZrB2-based SFM ceramics densified at various temperatures were systematically investigated. The mechanical properties of ZrB2-based SFM ceramics slightly improved with the increase of sintering temperature. ZrB2-based SFM ceramics exhibited excellent oxidation resistance and remained intact without macroscopic cracks after ablation for 615 s in oxyacetylene flame with maximum temperatures exceeding 2150 °C. The oxidation behavior was analyzed in detail.  相似文献   

10.
超高温陶瓷及其复合材料因具有耐超高温、轻质和抗氧化烧蚀等优点,目前已成为航空航天领域热结构材料研究的热点和前沿。基于稀土化合物在热障涂层等领域的优异性能和成功应用,研究人员将稀土化合物引入超高温陶瓷及其复合材料中,改善氧化层的结构和性质,以期解决超高温陶瓷基复合材料氧化层增长速度偏快和宽温域高低温循环氧化层易剥落等问题。本文综述了稀土改性超高温陶瓷及其复合材料的研究现状,分析探讨了改性机理,并展望了未来的研究发展方向。  相似文献   

11.
A novel negative temperature coefficient material based on lanthanum zirconate ceramics was proposed for high-temperature applications. This material was synthesized through a solid-state reaction by sintering at 1923 K for 10 h in air. The X-ray diffraction and scanning electron microscopy results confirmed that La2Zr2O7 ceramics exhibited a pyrochlore phase with a relative density of 98.2 %. The resistance–temperature characteristics of the material revealed that La2Zr2O7 ceramics exhibited an NTC feature within the broad temperature range of 973–1773 K in addition to maintaining high thermal constant B, and resistivity to ensure good sensitivity at high temperatures. These properties, along with high ceiling temperature, unique oxygen insensitivity, and excellent ageing coefficient of <0.7 % at 1773 K, render La2Zr2O7 ceramics a promising candidate as thermistor materials with high-temperature NTC.  相似文献   

12.
Silicon carbide ceramics obtained by silicon reactive infiltration are nowadays employed within industry in several high temperature applications. Although these ceramics show good thermo-mechanical properties and oxidation resistance, they suffer temperature limitations (1400 °C). At higher temperatures another type of ceramics, commonly known as ultra high temperature ceramics (UHTCs), is under study. These include the transition metal diborides of group IV; one in particular, zirconium diboride, is interesting in certain applications (e.g. aerospace) because of its low relative density. ZrB2-SiC ceramics show good thermo-mechanical properties and maintain the “protective” passive oxidation regime of their scales over a wide range of temperatures.This paper presents a feasibility study on a manufacturing methodology to produce Si-SiC-ZrB2 bulk ceramics taking advantage of the reactive infiltration technique. This technique allows lower processing temperatures and near to net shape capability due to low shrinking of the green compacted bodies. C-SiC-ZrB2 preforms were successfully infiltrated with molten silicon. The resulting Si-SiC-ZrB2 composites showed promising oxidation behavior, similarly to that reported in other works. Bulk material optimization was performed with a view to manufacturing Si-SiC-ZrB2 ceramic matrix composites by silicon reactive infiltration in future.  相似文献   

13.
A hybrid carbide ultra-high temperature ceramics matrix [(Hf,Ti)C-SiC] reinforced with BN-coated carbon fibres was fabricated and tested for surface oxidation resistance. The UHTC composite showed an average mass ablation rate of 0.0014 g/s after exposure to a high heat flux (~17 MW/cm2) oxyacetylene flame test for 30 s above 2500 °C. The cross-sectional profile of the oxides scale formed was characterised and analysed. The scale was multicomponent; consisting of oxides of Hf, Ti and Si, as well as HfTiO4 and HfSiO4, which underwent phase separation and immiscibility. Multiple glassy bubbles formed on the scale surface due to the impediment of escaping gases by the glassy layer on the outer scale. The largest pores in the scale and surface bubbles that resisted rupture were the dominant features of the outermost phase-separated layer. Phase separation in the scale top layer improves the resistance to scale rupture.  相似文献   

14.
Given the electromagnetic interference (EMI) and heat aggregation issue faced by electronic components, an urgent need exists to integrate EMI shielding and thermal conductivity in one material. Herein, a novel lightweight porous Ti3SiC2 ceramic with ordered structural arrangement was fabricated by using budget-friendly raw materials through ice template design and in-situ reaction synthesis. Leveraging the excellent conductivity and thermal conductivity of Ti3SiC2, a dual-functional advanced material with efficient EMI shielding and thermal management capabilities was obtained. At room temperature, porous Ti3SiC2 ceramics can achieve a shielding effectiveness of 35.44 dB and a thermal conductivity of 12.17 W/mK, with performance that can be tuned by porosity. In further, the porous Ti3SiC2 ceramic can work stably in thermal environments from room temperature to 700 °C or in corrosive environments rich in acid, alkali, and salts due to its excellent high temperature oxidation resistance and corrosion resistance. In view of the dual-functional characteristics and the stability of operation in harsh thermal environments, ordered porous Ti3SiC2 ceramics are promising for modern maritime and aerospace applications.  相似文献   

15.
The mechanical properties, thermal shock resistance, and ablation resistance of nano ZrB2 modified Si2BC3N ceramics were investigated. The results show that ZrB2 stimulated microstructure evolution obviously. Therefore, the maximum strength and fracture toughness reach 559.6 MPa and 6.77 MPa·m1/2, which are improved by 61.0% and 29.4%, respectively. Furthermore, the residual strengths of 10 wt% ZrB2 containing composites tested at 1000 ℃ retain 363.6 MPa, which is much higher than 97.7 MPa of pristine Si2BC3N ceramics. Besides, the ablation resistance of ZrB2 modified Si2BC3N ceramics at 3000 ℃ is enhanced remarkably and the linear and mass ablation rates of ZrB2-10 are only 0.009 mm/s and 1.91 mg/s, respectively. The ablation in the ultra-high temperature zone is totally dominated by the ZrB2 component, and the thermochemical erosion is determined by the oxidation resistance of ZrB2 in the thermal affected zone.  相似文献   

16.
The oxidative degradation of ZrB2 ceramics is the main challenge for its extensive application under high temperature condition. Here, we report an effective method for co-doping suitable compounds into ZrB2 in order to significantly improve its anti-oxidation performance. The incorporation of SiC and WC into ZrB2 matrix is achieved using spark plasma sintering (SPS) at 1800?°C. The oxidation behavior of ZrB2-based ceramics is investigated in the temperature range of 1000?°C–1600?°C. The oxidation resistance of single SiC-doped ZrB2 ceramics is improved due to the formation of silica layer on the surface of the ceramics. As for the WC-doped ZrB2, a dense ZrO2 layer is formed which enhances the oxidation resistance. Notably, the SiC and WC co-doped ZrB2 ceramics with relative density of almost 100% exhibit the lowest oxidation weight gain in the process of oxidation treatment. Consequently, the co-doped ZrB2 ceramics have the highest oxidation resistance among all the samples.  相似文献   

17.
《Ceramics International》2019,45(14):17144-17151
Carbon nanotubes (CNTs) decorated with ferromagnetic materials have promising potential in electromagnetic interference (EMI) shielding applications. In this work, CNT sponges with increasing density were fabricated by filling them with magnetic Fe nanowires of mutative filling ratios via chemical vapor deposition (CVD). Results indicated that Fe@CNT composites with the highest density endowed the most remarkable average SET value of 70.01 dB (more than 99.99999% absorption), showing an ultra-high EMI shielding performance. However, the susceptibility to oxidation of carbon materials has restricted its further development in high-temperature EMI shielding applications. Therefore, the Fe@CNT composites were encapsulated by silicon carbide (SiC) with satisfactory oxidation resistance. Thereafter, the average SET value of SiC encapsulated a higher density Fe@CNT sponge decreased to an adequate value of 36.48 dB due to the huge loss of electrical conductivity. However, the SET value of it only dropped by about 1.20 as the temperature went up from 25 to 600 °C, demonstrating an excellent stability under high temperature conditions. As a proof of concept, the Fe@CNT/SiC composites with adequate EMI shielding performance and satisfactory oxidation resistance suggest its prospect in high temperature resistant EMI shielding.  相似文献   

18.
Boron-doped nano-polycrystalline diamond (B-NPD) uniformly containing boron atoms in the diamond lattice has been successfully produced by direct conversion sintering under ultra-high pressure and high temperature using boron-doped graphite as a starting material, and its wear properties on optical glass materials have been investigated. The chemical wear of B-NPD sliding on glass was highly suppressed under sliding conditions where undoped NPD is worn considerably by chemical reaction with glass because the frictional resistance of NPD decreased and its sliding performance was improved by adding boron. In addition, because B-NPD has electrical conductivity, tribo-microplasma damages attributed to frictional electrification were not observed. Thus, the wear resistance of B-NPD on glass materials was improved greatly in comparison with that of undoped NPD. These results indicate that B-NPD has outstanding potential as a cutting tool material for high-performance and high-precision cutting on various types of glass, nonconductive ceramics and rigid plastics which are difficult to cut by conventional diamonds because of tribo-chemical wear or tribo-electrical wear.  相似文献   

19.
Joining is crucial for ultra-high temperature ceramics (UHTCs) to be used in demanding environments due to the difficulty in manufacturing large and complex ceramic components. In this study, ZrB2-SiC composite UHTCs parts were joined via Ni foil as filler, and the mechanical properties and oxidation behaviour of the fabricated ZrB2-SiC/Ni/ZrB2-SiC (ZS/Ni/ZS) joint were investigated. Firstly, dense ZrB2-SiC composites were prepared from nano-sized powders by spark plasma sintering (SPS). The ZrB2-SiC parts were then joined using SPS. Furthermore, the elastic modulus, hardness, shear strength and high temperature oxidation behaviour of the ZS/Ni/ZS joint were examined to evaluate its properties and performance. The experimental results showed that the ZrB2-SiC parts were effectively joined via Ni foil using SPS and the resultant microstructures were free from any marked defects or residual metallic layers in the joint. Although the elastic modulus and hardness in the joining zone were lower than those in the base ZrB2-SiC ceramics, the shear strength of the joint reached ∼161 MPa, demonstrating satisfactory mechanical properties. Oxidation tests revealed that the ZS/Ni/ZS joint possesses good oxidation resistance for a wide range of elevated temperatures (800–1600 oC), paving the way for its employment in extreme environments.  相似文献   

20.
碳化硅基材料具有优良的高温性能,但作为非氧化物陶瓷,碳化硅材料的高温氧化造成的性能衰减限制了其进一步的广泛应用.本文通过分析碳化硅的氧化机理,对比和总结了碳化硅抗氧化涂层的制备方法和涂层体系,并结合实际工作对碳化硅抗氧化涂层的研究提出了具体的见解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号