首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
A new method is described, in which 3D‐printed structures are implemented in bubble column reactors to dissolve the macroscopic and the microscopic influences. The effect of these structuring method on the fluid dynamic behavior, the gas distribution, mass transfer, and fluid velocity inside bubble columns is shown in this contribution.  相似文献   

2.
A new method for the determination of mechanical stresses in two‐phase reactors is described. The time‐dependent disintegration kinetics of a clay‐floc system are measured with a laser scanning microscope. By describing the flocs employing fractal geometry and by transforming the disintegration kinetics according to a multifractal‐approach for turbulent flow fields, effective stresses can be calculated for bubble columns in two‐phase operation mode by comparison to the mechanical stress in a turbulent single‐phase couette flow. Results are given for stresses measured in a bubble column at different operating conditions.  相似文献   

3.
搅拌反应器内气液两相流的CFD研究进展   总被引:1,自引:0,他引:1  
搅拌式气液反应器因其操作灵活、适用性强等优点,在过程工业中应用广泛.综述了采用计算流体力学CFD技术对搅拌反应器内气液两相流动行为的数值模拟研究.Euler-Euler双流体模型作为主要方法用于描述气液两相流动,在其基础上耦合相对简单的气泡数密度函数模型或复杂的群体平衡模型,可较为准确地预测搅拌反应器内气泡尺寸和局部气含率及其分布规律.CFD模拟结果可用以分析和评价不同搅拌桨叶、搅拌桨组合和气体分布器的气液分散性能,对气液反应器的结构优化和过程强化提供了有效手段.  相似文献   

4.
Slurry bubble column reactors (SBCR) is a three-phase fluidized reactor with outstanding advantages compared with other reactors and is difficult to scale-up due to lack of information on hydrodynamics and mass transfer over a wide range of operating conditions of commercial interest. In this paper, an experiment was conducted to investigate the bubble behavior in SBCR with a height of 5600 mm and an interior diameter of 480 mm. Bubble rise velocity, bubble diameter, and gas holdup in different radial and axial positions are measured in SBCR using four-channel conductivity probe. Tap water, air, and glass beads (mean diameter 75–150 μm) are used as liquid, gas, and solid phases, respectively. It shows that hydrodynamic parameters have good regularity in SBCR. Moreover, a commercial computational fluid dynamics (CFD) package, Fluent, was used to simulate the process in SBCR. The simulations were carried out using axi-symmetric 2-D grids. Data obtained from experiment and CFD simulation are compared, and results show that the tendency of simulation is almost uniform with the experiment, which can help to obtain further understanding about multiphase flow process and establish a model about the synthesis of alcohol ether fuel in SBCR.  相似文献   

5.
CFD simulation of bubble columns incorporating population balance modeling   总被引:1,自引:0,他引:1  
A computational fluid dynamics (CFD)-code has been developed using finite volume method in Eulerian framework for the simulation of axisymmetric steady state flows in bubble columns. The population balance equation for bubble number density has been included in the CFD code. The fixed pivot method of Kumar and Ramkrishna [1996. On the solution of population balance equations by discretization—I. A fixed pivot technique. Chemical Engineering Science 51, 1311-1332] has been used to discretize the population balance equation. The turbulence in the liquid phase has been modeled by a k-ε model. The novel feature of the framework is that it includes the size-specific bubble velocities obtained by assuming mechanical equilibrium for each bubble and hence it is a generalized multi-fluid model. With appropriate closures for the drag and lift forces, it allows for different velocities for bubbles of different sizes and hence the proper spatial distributions of bubbles are predicted. Accordingly the proper distributions of gas hold-up, liquid circulation velocities and turbulence intensities in the column are predicted. A survey of the literature shows that the algebraic manipulations of either bubble coalescence or break-up rate were mainly guided by the need to obtain the equilibrium bubble size distributions in the column. The model of Prince and Blanch [1990. Bubble coalescence and break-up in air-sparged bubble columns. A.I.Ch.E. Journal 36, 1485-1499] is known to overpredict the bubble collision frequencies in bubble columns. It has been modified to incorporate the effect of gas phase dispersion number. The predictions of the model are in good agreement with the experimental data of Bhole et al. [2006. Laser Doppler anemometer measurements in bubble column: effect of sparger. Industrial & Engineering Chemistry Research 45, 9201-9207] obtained using Laser Doppler anemometry. Comparison of simulation results with the experimental measurements of Sanyal et al. [1999. Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors. Chemical Engineering Science 54, 5071-5083] and Olmos et al. [2001. Numerical simulation of multiphase flow in bubble column reactors: influence of bubble coalescence and breakup. Chemical Engineering Science 56, 6359-6365] also show a good agreement for liquid velocity and gas hold-up profiles.  相似文献   

6.
7.
The effects of liquid phase rheology on the local hydrodynamics of bubble column reactors operating with non‐Newtonian liquids are investigated. Local bubble properties, including bubble frequency, bubble chord length, and bubble rise velocity, are measured by placing two in‐house made optical fiber probes at various locations within a bubble column reactor operating with different non‐Newtonian liquids. It was found that the presence of elasticity can noticeably increase the bubble frequency but decreases the bubble chord length and its rise velocity. The radial profiles of bubble frequency, bubble chord length, and bubble rise velocity are shown to be relatively flat at low superficial gas velocity while they become parabolic at high superficial gas velocity. Moreover, the bubble size and gas holdup are correlated with respect to dimensionless groups by considering the ratio between dynamic moduli of viscoelastic liquids. The novel proposed correlations are capable of predicting the experimental data of bubble size and gas holdup within a mean absolute percentage error of 9.3% and 10%, respectively. © 2015 American Institute of Chemical Engineers AIChE J, 62: 1382–1396, 2016  相似文献   

8.
9.
Gas phase conversions and product selectivities predicted by the single-bubble-class and modified two-bubble-class models of bubble column reactors are compared for a multistep gas-liquid reaction involving series/parallel steps. A situation is considered where the first reaction step is fast and occurs in the interfacial region while the other reaction steps are slow and occur only in the liquid bulk. Equivalent hydrodynamic and transport parameters provide a common basis for the comparison. The differences in the gas phase conversions predicted by these models are insignificant. However, the two models predict very different values of selectivities for the intermediate products. This analysis enables us to judge the range of applicability of the single-bubble-class model in design and scale-up of bubble column reactors.  相似文献   

10.
The velocity‐holdup relationship is the most important design parameter for gas—liquid bubble column reactors, providing the basis for the prediction of heat and mass transfer coefficients and information on hydrodynamic conditions. A summary of the literature on gas holdup in bubble columns is supplemented by new experimental results which extend the data range. A criterion for the gas velocity leading to the transition between homogeneous and heterogeneous regimes for perforated plate gas distributors has been developed. Correlations for gas holdup in both regimes are developed and verified against both new and existing data.  相似文献   

11.
It is shown that the two-phase model for bubbling gas—solid fluidized beds can be extended to bubble column slurry reactors operating in the heterogeneous flow regime by proper definition of the ‘dilute’ and ‘dense’ phases. The ‘dilute’ phase in a bubble column slurry reactor is to be identified with the fast-rising ‘large’ bubbles. The ‘dense’ phase consists of the slurry phase in which ‘small’ bubbles are finely dispersed. With the aid of extensive experimental data obtained in columns of 0.1, 0.19 and 0.38 m diameter it is shown that the rise velocity of the ‘dilute’ phase for gas—solid fluid beds and slurry reactors show analogous scale dependencies and can be modelled in a similar manner. It is also demonstrated that fluidized multiphase reactors can be modelled in a common manner using Computational Fluid Dynamics (CFD) within the Eulerian framework. It is concluded that CFD is an invaluable tool for scaling up of fluidized multiphase reactors.  相似文献   

12.
鼓泡塔反应器内流体动力学特性预测对于鼓泡塔的设计和发展具有重要意义。应用CFX4.4商业软件,分别采用"压力"和"开口"出口边界,数值模拟研究出口边界条件对鼓泡塔里气液泡状流动结果的影响。结果表明,当出口应用"开口"边界条件,自由表面是一个动态表面,CFX可以捕捉塔顶部整个自由表面特性。由"压力"出口边界和"开口"出口边界条件求得的数值结果差异很小。  相似文献   

13.
A scale up strategy for bubble column slurry reactors   总被引:2,自引:0,他引:2  
The hydrodynamics of bubble column slurry reactors are strongly influenced by the scale of operation. We suggest a strategy for scaling up reactors from laboratory scale to commercial size that relies on a fundamental understanding of bubble hydrodynamics, which is incorporated into a computational fluid dynamics (CFD) model.  相似文献   

14.
15.
One of the greatest challenges in the characterization of bubbles in a bubble column has been the prediction of the bubble diameter and the gas holdup. In this study a novel technique for predicting the mean bubble diameter and the local gas holdup using a non‐invasive ultrasonic method with neural network was investigated. The measurement parameters of the energy attenuation and the transmission time difference of ultrasound are used to obtain the mean bubble diameter and the local gas holdup in an air‐water dispersion system using neural network reconstruction. Bubble size distributions in a 2‐D bubble column are obtained experimentally by using a photographic method. An adequate selection of the neural network structure has been carried out to represent the training data. The representative results using the present structure show good agreement with the measured data.  相似文献   

16.
A multiphase computational fluid dynamics(CFD) model coupled with the population balance equation(PBE) was developed in a homogeneous air–kerosene bubble column under elevated pressure(P). The specific pressure drop(DP/L), gas holdup(a_G), and Sauter mean diameter(d_(32)) were experimentally measured in the bubble column with 1.8 m height and 0.1 m inner diameter, which was operated at a superficial gas velocity of 12.3 mm·s~(-1), and P = 1–35 bar(1 bar = 10~5 Pa). A modified drag coefficient model was proposed to consider the effect of bubble swarm and pressure on hydrodynamics of the bubble column.The Luo breakage model was modified to account for liquid density, viscosity, surface tension and gas density. The DP/L, a_G, and d_(32) obtained from the CFD model were compared with experimental data,and the gas density-dependent parameters of the CFD model were identified. With increasing P from 1 to 35 bar, the aGvaried from 5.4% to 7.2% and the d_(32) decreased from 2.3 to 1.5 mm. The CFD-PBE model is applicable to predict hydrodynamics of pressurized bubble columns for gas–organic liquid in the homogeneous regime.  相似文献   

17.
The sparger is an important accessory of bubble column reactors which governs the performance of the reactor. Specifically the sparger design becomes more important when the aspect ratio of the bubble column is low. The maldistribution and design of the sparger are of major concern and both these aspects are described in detail in the present work. Various methods for reducing maldistribution have been discussed and a simple method for its reduction is presented experimentally. Further a step‐wise design procedure for a pipe/ring type of sparger for bubble columns is presented together with a work example.  相似文献   

18.
H. Jin  D. Liu  S. Yang  G. He  Z. Guo  Z. Tong 《化学工程与技术》2004,27(12):1267-1272
The volumetric gas‐liquid mass transfer coefficient, kLα, for oxygen was studied by using the dynamic method in slurry bubble column reactors with high temperature and high pressure. The effects of temperature, pressure, superficial gas velocity and solids concentration on the mass transfer coefficient are systemically discussed. Experimental results show that the gas‐liquid mass transfer coefficient increases with the increase in pressure, temperature, and superficial gas velocity, and decreases with the increase in solids concentration. Moreover, kLα values in a large bubble column are slightly higher than those in a small one at certain operating conditions. According to the analysis of experimental data, an empirical correlation is obtained to calculate the values of the oxygen volumetric mass transfer coefficient for a water‐quartz sand system in two bubble columns with different diameter at high temperature and high pressure.  相似文献   

19.
Computational fluid dynamics (CFD) was used to simulate the effect of sparger construction in gas holdup and liquid axial velocity in a shallow bubble column reactor for the air‐water system. Model parameters were evaluated in 2‐ and 3‐D simulations by using a two‐fluid model and the standard k‐? turbulence model. The Eulerian‐Eulerian approach was employed to predict the height of column that is affected by the sparger. It was found that increasing the number of orifices in the sparger increases the total gas holdup. Moreover, each orifice causes an increase in the circulation and mixing of liquid in the column. The results of the simulations follow the trends observed in the findings of Dhotre and Joshi [1].  相似文献   

20.
As the hydrodynamic behavior in bubble columns is difficult to characterize, computational fluid dynamics (CFD) is a useful alternative tool for research and design. An experimental and computational analysis of the macromixing and gas holdup of a bubble column indicates that 3D simulations with CFD using an Eulerian‐Eulerian approximation yield results of the overall velocity field and gas holdup distribution that are suitable for engineering design purposes. Particularly, CFD simulations uncover that the inclusion of concentric solid plates into a bubbling column increase the gas holdup by 79 % and the mixing time by 48 % when compared with a column without plates operating at similar superficial gas velocities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号