首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
BACKGROUND: Both exfoliated and toughened polypropylene‐blend‐montmorillonite (PP/MMT) nanocomposites were prepared by melt extrusion in a twin‐screw extruder. Special attention was paid to the enhancement of clay exfoliation and toughness properties of PP by the introduction of a rubber in the form of compatibilizer toughener: ethylene propylene diene‐based rubber grafted with maleic anhydride (EPDM‐g‐MA). RESULTS: The resultant nanocomposites were characterized using X‐ray diffraction, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical analysis and Izod impact testing methods. It was found that the desired exfoliated nanocomposite structure could be achieved for all compatibilizer to organoclay ratios as well as clay loadings. Moreover, a mechanism involving a decreased size of rubber domains surrounded with nanolayers as well as exfoliation of the nanolayers in the PP matrix was found to be responsible for a dramatic increase in impact resistance of the nanocomposites. CONCLUSION: Improved thermal and dynamic mechanical properties of the resultant nanocomposites promise to open the way for highly toughened super PPs via nanocomposite assemblies even with very low degrees of loading. Copyright © 2008 Society of Chemical Industry  相似文献   

2.
Polyethylene / montmorillonite (PE/MMT) nanocomposites films were prepared by blending in the molten state: Low-density polyethylene (LDPE), montmorillonite clay, and polyethylene grafted maleic anhydride (LDPE-g-MA) or zinc neutralized carboxylate ionomer (Surlyn B) as compatibilizers. A chemically modified clay Cloisite 20A has been used. Nanocomposites were prepared by melt blending in a twin-screw extruder by using two-step mixing. Characterization of the nanocomposites was performed by mechanical properties, X-ray diffraction, light transmittance, infrared spectroscopy (FTIR) and transmission electronic microscope (TEM) techniques. Changes in UV irradiated nanocomposites film samples were characterized by FTIR. The results were analyzed in terms of the effect of the compatibilizing agent in the clay dispersion, and UV degradation of the nanocomposite.  相似文献   

3.
A new toughened polypropylene (PP)/organophilic montmorillonite (OMMT) nanocomposite was obtained by melt intercalation extrusion in a twin‐screw extruder without any compatibilizer. The nanocomposites were characterized by transmission electron microscopy (TEM) observation, melt flow rate (MFR) testing, mechanical properties measurement, melting and crystallization behaviors, and thermal stability determination. TEM images revealed the existence of intercalated OMMT layers dispersed throughout the PP matrix. A clear reduction in MFR was observed as the OMMT content increased. The yield strength, elongation at yield, and initial modulus of the PP/OMMT nanocomposites increased slightly as the result of the reinforcement of the OMMT nanofiller. The ultimate value of notched impact strength of the nanocomposites was over twofold that of neat PP after incorporation with 4 wt % OMMT; meanwhile, the heat deflection temperature values showed that the thermal stability increased a little. This is a new approach for preparation for the production of a toughened PP material with a high thermal stability and rigidity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Nanocomposites based on high density polyethylene (HDPE)/linear low density polyethylene (LLDPE) blend were prepared by melt compounding in a twin‐screw extruder using organoclay (montmorillonite) as nano‐filler and a 50/50 wt% mixture of maleic anhydride functionalized high density polyethylene (HDPE‐g‐MA) and linear low density polyethylene (LLDPE‐g‐MA) as the compatibilizing system. The addition of a maleated polyethylene‐based compatibilizing system was required to improve the organoclay dispersion in the HDPE/LLDPE blend‐based nanocomposite. In this work, the relationships between thermal properties, gas transport properties, and morphology were correlated. The compatibilized nanocomposite exhibited an intercalated morphology with a small number of individual platelets dispersed in the HDPE/LLDPE matrix, leading to an significant decrease in the oxygen permeation coefficient of the nanocomposites. A decrease in the carbon dioxide permeability and oxygen permeability with increase of nanoclay was observed for the compatibilized nanocomposites. The carbon dioxide permeability of the compatibilized nanocomposites was lower than the carbon dioxide permeability of the uncompatibilized nanocomposites even with the low intrinsic barrier properties of the compatibilizer. These effects were attributed to a good dispersion of the inorganic filler, good wettability of the filler by the polymer matrix, and strong interactions at the interface that increased the tortuous path for diffusion. Theoretical permeability models were used to estimate the final aspect ratio of nanoclay in the nanocomposite and showed good agreement with the aspect ratio obtained directly from TEM images. POLYM. ENG. SCI., 56:765–775, 2016. © 2016 Society of Plastics Engineers  相似文献   

5.
The focus of the current study is to investigate the influence of Co–Al layered double hydroxide (LDH) on the morphological, thermal, and mechanical features of poly(methyl methacrylate) (PMMA)‐based nanocomposites. Sodium dodecyl sulfate modified Co–Al LDH was synthesized by single step coagulation method. The PMMA nanocomposites containing different loadings of nanofiller (1–7 wt %) and polystyrene‐grafted maleic anhydride compatibilizer (5 wt %) were melt intercalated via twin screw extruder and later subjected to injection molding to prepare mechanical testing samples. The different properties of PMMA nanocomposites were studied by using XRD, TEM, FTIR, DSC, TGA, tensile, flexural, impact, and flammability analysis. The result of XRD analysis suggested the exfoliated morphology of the nanocomposite while the TEM demonstrated the intercalated structure at higher loading of LDH. The thermal characterization results revealed that thermal properties were improved by the addition of Co–Al LDH, whereas the flammability test exposed that dripping was minimum at 7 wt % loading. The mechanical properties exhibited that optimum results were obtained at 1 wt % loading of Co–Al LDH. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45774.  相似文献   

6.
Ethylene‐vinyl acetate copolymer (EVA)/montmorillonite MMT nanocomposites have been prepared by using different methods: one is from the organophilic montmorillonite (OMT) and the other is from the pristine MMT and reactive compatibilizer hexadecyl trimethyl ammonium bromide (C16). In this study, different kneaders were used (twin‐screw extruder and twin‐roll mill) to prepare nanocomposites. The nanocomposite structures are evidenced by the X‐ray diffraction (XRD) and high‐resolution electronic microscope (HREM). The thermal properties of the nanocomposites were investigated by thermogravimetric analysis (TGA). Moreover, the tensile tests were carried out with a Universal testing machine DCS‐5000. It is shown that different methods and organophilic montmorillonite have influence on EVA/MMT nanocomposites.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2416–2421, 2004  相似文献   

7.
Morphological, optical, and barrier properties of PP/MMT nanocomposites   总被引:2,自引:2,他引:0  
In this work, nanocomposites of polypropylene (PP) and organically modified montmorillonite (MMT) were evaluated concerning optical, mechanical, and barrier properties. The nanocomposites were prepared by melt compounding using a twin-screw extruder. The PP/MMT films were evaluated by measurements of oxygen and water vapor permeability, and to verify its efficiency as a barrier to ultraviolet radiation (by UV–Vis spectroscopy). MMT has demonstrated a high ability to improve the gas barrier properties of the PP. Furthermore, MMT showed optical efficiency acting as a UV absorber, and presented higher absorptions at wavelengths between 215 and 254 nm. These results suggest that these nanocomposite materials have great potential for applications such as films with superior properties for food packing.  相似文献   

8.
In the present investigation Polypropylene–Maleic anhydride grafted polypropylene–organically modified MMT (PP-MAPP-OMMT) nanocomposites were prepared by melt mixing in a twin screw extruder followed by injection molding. The effect of clay chemistry and compatibilizer on the properties of the nanocomposites has been studied. Sodium montmorillonite has been organically modified using quaternary and alkyl amine intercalants. A comparative account with commercial quaternary ammonium modified clays i.e Cloisite 20A, Cloisite 15A and Cloisite 30B has been presented. Storage modulus of PP matrix also increased in the nanocomposites, indicating an increase in the stiffness of the matrix polymer with the addition of organically modified nanoclays. The morphology of the nanocomposites has been examined using wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). Morphological findings revealed efficient dispersion of organically modified nanoclays within the PP matrix. MAPP compatibilized PP/Cloisite 15A nanocomposites displayed finely dispersed exfoliated nanomorphology as compared with other systems.  相似文献   

9.
This work analyses the effect of using ethylene-propylene-diene-monomer-grafted maleic anhydride (EPDM-g-MA) as compatibilizer to improve the interfacial properties and toughness of high-density polyethylene–organoclay–silver (HDPE/clay/silver) nanocomposites. EPDM-g-MA was reacted using ultrasound with a solution of AgNO3 0.04 M and ethylene glycol using ammonium hydroxide to obtain the silver ammonium complex. This silver-coated maleated EPDM was then melt mixed with HDPE and organoclay (Nanomer I28E) using a twin-screw extruder. Transmission electron microscopy (STEM) and X-ray diffraction (XRD) results confirmed the filler dispersion of both organoclay and silver nanoparticles into HDPE matrix when maleated EPDM was used. Both fillers were better dispersed and exfoliated by using this compatibilizer. The thermal stability enhancement of nanocomposites was confirmed using thermogravimetric analysis. Mechanical and antimicrobial properties demonstrated that better dispersed filler obtained with maleated EPDM enhanced the toughness and antimicrobial behaviour of HDPE/clay/silver hybrid nanocomposites. This confirmed that maleated EPDM was an efficient compatibilizer to obtain hybrid nanocomposites with enhanced properties to be used for several HDPE applications.  相似文献   

10.
PET/蒙脱土纳米复合材料的增韧研究   总被引:1,自引:0,他引:1  
以聚对苯二甲酸乙二酯(PET)为基体,以(甲基丙烯酸甲酯/丙烯腈/丁二烯/苯乙烯)共聚物为增韧剂,采用熔融共混法制备了PET/蒙脱土纳米复合材料。用广角X射线衍射仪、透射电子显微镜研究了复合材料的微观结构,并测试了力学性能。结果表明,所制得的纳米复合材料具有剥离型和插层型结构;增韧剂及增容剂的引入都较大程度地提高了复合材料的缺口冲击强度,而拉伸强度和弯曲强度基本不变;纳米蒙脱土及增容剂的加入提高了纳米复合材料结晶性能。  相似文献   

11.
This work addresses the effect of organomodified layer double hydroxide (OLDH) on the properties of PP/LDH nanocomposites prepared by melt intercalation method using a single screw extruder with maleic anhydride grafted polypropylene (PP-g-MA) as a compatibilizer. For this, Ni-Al LDH was first prepared by the co-precipitation method at constant pH using their nitrate salts. The above synthesized pristine LDH was organically modified using sodium dodecyl sulphate (SDS) by the regeneration method. The structural and thermal properties of LDH and PP nanocomposites were performed by X-ray diffraction (XRD), FTIR spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The influence of LDH loading on the mechanical and thermal properties of the nanocomposite was also investigated. The XRD results confirmed the formation of exfoliated PP/LDH nanocomposites. PP/LDH nanocomposites exhibited enhanced thermal stability relative to the pure PP. When 10% weight loss was selected as a point of comparison, the decomposition temperature of PP/LDH (5 wt%) nanocomposite was 15.3°C higher than that of pure PP. The DSC result indicated an increase in crystallization and melting temperature of the PP/LDH nanocomposites compared to pure PP. Overall, the mechanical properties of the PP/LDH nanocomposites increased with an increase in the LDH content. The maximum improvement of tensile strength, Young's modulus, flexural strength, and flexural modulus for the PP/LDH nanocomposite was found to be 11, 22.5, 28, and 22%, respectively, over neat PP. For comparison purposes, a nanocomposite with 5 wt% modified bentonite (PP/B5) was also prepared under the same operating condition and there was no significant improvement in mechanical properties (tensile strength and modulus).  相似文献   

12.
Summary: Linear low‐density polyethylene (LLDPE)/clay nanocomposites are obtained and studied by using a zinc‐neutralized carboxylate ionomer as a compatibilizer. LLDPE‐g‐MA is used as a reference compatibilizer. Two different clays, natural montmorillonite (Closite Na+) and a chemically modified clay Closite 20A have been used. Nanocomposites are prepared by melt blending in a twin‐screw extruder using two mixing methods: two‐step mixing and one‐step mixing. The relative influence of each compatibilizer is determined by wide‐angle X‐ray diffraction structural analysis and mechanical properties. The results are analyzed in terms of the effect of the compatibilizing agent and incorporation method in the clay dispersion, and the mechanical properties of the nanocomposites. Experimental results confirm that the film samples with ionomer show a good mechanical performance only slightly below that of the samples with maleic anhydride (MA). The two‐step mixing conditions result in better dispersion and intercalation for the nanofillers than one‐step mixing. The exfoliation of clay platelets leads to an improved thermal stability of the composite. The oxygen permeability of the clay nanocomposites, using ionomer as a compatibilizer, is decreased by the addition of the clay.

TEM image of a PE/4 wt.‐% Closite 20A nanocomposite formed using ionomer.  相似文献   


13.
The toughening of polypropylene [PP] with styrene–butadiene–styrene rubber [SBS]/montmorillonite [MMT] nanocomposites was investigated with respect to morphological, thermal, and mechanical properties. The MMT/SBS nanocomposites were prepared in an internal mixer, using an epoxidized SBS [SBSe] to investigate its effect as a compatibilizer. The MMT/SBS nanocomposite was added to PP up to 10 wt%, aiming at material toughening. Transmission electron microscopy (TEM) revealed MMT induced dispersed-phase reductions when compared to typical PP/SBS blends. In addition, changes in the PP crystallization process were observed in the presence of the nanocomposite. Surprisingly, the use of nanofiller, combined with SBSe compatibilizer agent, increased the PP impact strength by about 60%, with no reduction in the tensile module.  相似文献   

14.
The effect that polymer molecular weight has on the dispersion of relatively polar montmorillonite (MMT) in nonpolar, unmodified high density polyethylene (HDPE) was examined. Polymer layered silicate (PLS) nanocomposites were prepared via melt compounding in a single screw extruder using three unmodified HDPE matrices of differing molecular weight and organically modified MMT (organoclay) in concentrations ranging from 2 to 8 wt%. The weight average molecular weights (M W) of the HDPE matrices used ranged from 87,000 to 460,000 g/mol. X‐ray diffraction (XRD), tensile testing, dynamic mechanical thermal analysis (DMTA), and dynamic rheometry were performed on these nanocomposites. Nanocomposites generated from the high molecular weight (HMW) HDPE matrix exhibited increased intercalation of the MMT as shown by XRD and greater improvements in the Young's modulus when compared with nanocomposites generated from the low (LMW) and middle molecular weight (MMW) matrices. DMTA measurements carried out in torsion showed that the increase in shear modulus of the HMW nanocomposites was not as great as that of the LMW and MMW counterparts as observed from a lower percentage enhancement in the storage modulus (G′) and estimated heat distortion temperature (HDT). This was attributed to the higher degree of mechanical anisotropy in the HMW nanocomposites. POLYM. COMPOS., 28:499–511, 2007. © 2007 Society of Plastics Engineers  相似文献   

15.
通过加入适量马来酸酐接枝聚乙烯(PE-g-MAH),用熔融插层法制备了聚乙烯(PE)/蒙脱土(MMT)纳米复合材料,采用X射线衍射(XRD)、透射电镜(TEM)等表征了复合材料的微观结构和形态。结果表明聚乙烯分子链已插入蒙脱土片层间,实现了插层复合。复合材料热稳定性和对气液阻透性的测定结果表明,与基体聚乙烯相比,复合材料的热分解温度有所提高,对有机溶剂及气体的阻性也有较大改善。  相似文献   

16.
Low‐molecular‐weight copolymers of styrene and vinylbenzyl ammonium salts (oligomeric surfactant) were used to modify montmorillonite (MMT). The oligomeric‐modified MMT showed good thermal stability, which made it suitable to be used for preparing polycarbonate(PC)/MMT nanocomposites at high temperature. A different series of PC/MMT nanocomposites had been prepared by melt processing using a twin screw extruder. The effect of oligomeric surfactant structure and clay loading on the morphology, mechanical property, thermal stability, and color appearance of the nanocomposites were explored. The results of X‐ray diffraction and transmission electron microscopy analyses indicated that the PC/MMT nanocomposites had partially exfoliated structures. The PC/MMT nanocomposites were found to retain light colored, which was important for optical application. Compared to neat PC, the nanocomposites showed better properties of thermal stability and heat insulation. The mechanical properties of the nanocomposites are significantly enhanced by incorporating clay into the PC matrix. The tensile strength of nanocomposites with 2 wt% clay content was up to 55 MPa, which was much higher than that of the neat PC (37 MPa). The maximum tensile modulus value was 19% higher than that of neat PC. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

17.
Nanocomposites from polyurethane (PU) and montmorillonite (MMT) were prepared under melt‐mixing condition, by a twin screw extruder along with a compatibilizer to enhance dispersion of MMT. MMT used in this study was Cloisite 25A (modified with dimethyl hydrogenated tallow 2‐ethylhexyl ammonium) or Cloisite 30B (modified with methyl tallow bis‐2‐hydroxyethyl ammonium). Maleic anhydride grafted polypropylene (MAPP) was used as the compatibilizer. XRD and TEM analysis demonstrated that melt mixing by a twin‐screw extruder was effective in dispersing MMT through the PU matrix. The PU/Cloisite 30B composite exhibited better interlayer separation than the PU/Cloiste 25A composite. Nanoparticle dispersion was the best at 1 wt % of MMT and improved with compatibilizer content for both composites. Properties of the composites such as complex viscosity and storage modulus were higher than that of a pure PU matrix and increased with the increase in MMT content, but decreased with the increase in compatibilizer content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
F. Chavarria 《Polymer》2004,45(25):8501-8515
Nylon 6 and nylon 6,6 organoclay nanocomposites were prepared by melt processing using a twin screw extruder. The effects of polyamide type and processing temperature on the mechanical properties and the morphology of the nanocomposites were examined. Mechanical properties, transmission electron microscopy (TEM), wide-angle X-ray diffraction (WAXD), percentage crystallinity and isothermal thermo-gravimetric analysis (TGA) data are reported. A particle analysis was performed to quantitatively characterize the morphology; these results are later employed in modeling the modulus of these materials using composite theory. No significant difference was observed in the mechanical properties and morphology of PA-6 nanocomposites processed at two different temperatures. PA-6 nanocomposites had superior mechanical properties than those made from PA-66. The tensile strength of PA-66 nanocomposites deviated from linearity at high levels of MMT. WAXD and TEM results show that the PA-6 nanocomposites are better exfoliated than the PA-66 nanocomposites, which exhibit a mixture of intercalated and exfoliated structures. Mechanical properties were consistent with the morphology. DSC reveals a higher percentage of crystallinity in the PA-66 samples. Isothermal TGA shows only a 5% difference in the degradation of the organic modifier on the organoclay processed at 240 °C versus 270 °C. Particle analysis shows a higher average particle length and thickness, and a lower average particle density and aspect ratio in nanocomposites based on PA-66 versus PA-6. The Halpin-Tsai and Mori-Tanaka composite theories predict satisfactorily the behavior of the PA-6 nanocomposites, while the PA-66 nanocomposites were predicted acceptably up to a certain volume fraction where the non-linear behavior takes effect. All the results indicate that there is a lower degree of exfoliation in the nanocomposites produced with a PA-66 matrix apparently stemming from the chemical differences between PA-6 and PA-66.  相似文献   

19.
Organo‐Montmorillonite (Org‐MMT)/maleic anhydride grafted polypropylene (PP‐g‐MAH)/polypropylene nanocomposites have been prepared by melt blending with twin‐screw extruder. The mechanical properties of the nanocomposites and the dispersion of Org‐MMT intercalated by the macromolecular chain were investigated by transmission electron microscopy and mechanical tests. The crystal properties of the nanocomposites have been tested by a differential scanning calorimeter. The thermal properties of the nanocomposites were investigated by thermo gravimetric analysis. The results show that not only the impact property but also the tensile property and the bending modulus of the system have been increased evidently by the added Org‐MMT. The Org‐MMT has been dispersed in the matrix in the nanometer scale. With the addition of the Org‐MMT, the melting point and the crystalling point of the nanocomposites increased; the total velocity of crystallization of the nanocomposites also increased. Thermal stability of the nanocomposites is increased by the filled Org‐MMT. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2875–2880, 2006  相似文献   

20.
The compatibilization effects provided by different amine‐functionalized polyethylenes (PEs) versus those provided by a maleated polyethylene (PEgMA), for forming PE‐based film nanocomposites, were studied. Amine‐functionalized PEs were prepared by reaction of PEgMA with two primary amines, 2‐aminoethanol (EA) and 1,12‐aminododecane (D12), and a tertiary amine, 2‐[2‐(dimethylamino)ethoxy]ethanol (DMAE), in the melt to form the corresponding PEgEA, PEgD12 and PEgDMAE. Nanocomposites were prepared by melt mixing in a twin‐screw extruder PE and these three functionalized compatibilizers with a modified montmorillonite clay. The purpose of the current work was to determine the effect of the various amine‐functionalized PEs on the degree of exfoliation and optical properties of PE–clay nanocomposites in order to obtain nanocomposite films for greenhouse cover applications. Fourier transform infrared analysis confirmed the formation of the amine‐modified PE compatibilizers. Structural, morphological, mechanical, rheological and optical properties of film samples were used to characterize the nanocomposites. All the amine‐modified PE‐compatibilized nanocomposites had better clay exfoliation compared to uncompatibilized PE composites. Results showed that PEgDMAE formed highly exfoliated morphology and a favorable balance between mechanical (stiffness and ductility), optical and thermal insulating film properties even at higher clay contents. It was determined that nanocomposites with greater exfoliated structure showed better optical and thermal insulating film properties. PEgEA and PEgD12 compatibilizers did not provide a better interaction for exfoliation of the organoclay than the PEgMA material. The PEgDMAE compatibilizer led to a highly exfoliated morphology and a favorable balance between mechanical, optical and thermal insulating film properties even at higher clay contents. The PEgDMAE film nanocomposites could be used ideally for greenhouse cover applications. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号