首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Uncommoncis andtrans fatty acids can be desaturated and elongated to produce unusual C18 and C20 polyunsaturated fatty acids in animal tissues. In the present study we examined the formation of such metabolites derived fromcis andtrans isomers of oleic and linoleic acids of partially hydrogenated vegetable oil origin in rats. For two months, aduut male rats were fed a partially hydrogenated canola oil diet containing moderately high levels oftrans fatty acids (9.6 energy%) and an adequate level of linoleic acid (1.46 energy%). Analysis of the phospholipid (PL) fatty acids of liver, heart, serum and brain showed no new C18 polyunsaturated fatty acids, except for those uncommon 18∶2 isomers originating from the diet. However, minor levels (each <0.3% PL fatty acids) of six unusual C20 polyunsaturated fatty acids were detected in the tissues examined, except in brain PL. Identification of their structures indicated that the dietary 9c,13t−18∶2 isomer, which is the majortrans polyunsaturated fatty acid in partially hydrogenated vegetable oils, was desaturated and elongated to 5c,8c,11c,15t−20∶4, possibly by the same pathway that is operative for linoleic acid. Furthermore, dietary 12c−18∶1 was converted to 8c,14c−20∶2 and 5c,8c,14c−20∶3; dietary 9c,12t−18∶2 metabolized to 11c,14t−20∶2 and 5c,8c,11c14t−20∶4, and dietary 9t,12c to 11t,14c−20∶2. These results suggested that of all the possible isomers of oleic and linoleic acids in partially hydrogenated vegetable oils, 12c−18∶1, 9c,13t−18∶2, 9c,12t−18∶2 and 9t,12c−18∶2 are the preferred substrates for desaturation and elongation in rats. However, their conversions to C20 metabolites were not as efficient as that of oleic or linoleic acids.  相似文献   

2.
Following the suckling period, four groups of male four-week-old spontaneously hypertensive rats (SHR) were fed semisynthetic diets with 14% (by weight) of either sunflower seed oil [46% 18∶2(n−6); linoleic acid (LA)-rich], linseed oil [62.5% 18∶3(n−3)+12.9% 18∶2(n−6); α-linolenic acid (LNA)-rich], evening primrose oil [9.2% 18∶3(n−6)+71% 18∶2(n−6); γ-linolenic acid (LNA)-rich] or hydrogenated palm kernel fat [1.5% 18∶2(n−6); polyunsaturated fatty acid (PUFA)-deficient], respectively, up to an age of 18 wk. All diets enriched with PUFA provoked an attenuation of hypertension development. The effect was lowest in the LA-rich group and highest in the γ-LNA-rich group. Differences in fatty acid composition of renal phospholipids between groups reflect the fatty acids present in the respective dietary fats. Renomedullary production of PGF was significantly reduced in α-LNA-rich and slightly diminished in γ-LNA-rich fed rats. Aortic formation of 6-keto-PGF and TXB2 was increased in animals fed the γ-LNA-rich diet. Thus, the attenuation of hypertension development cannot be explained only by changes in prostanoid formation. Other mechanisms possibly involved should be pursued.  相似文献   

3.
Short-term (i.e., 3 d) continuous enteral feeding of diets containing eicosapentaenoic (EPA) and γ-linolenic (GLA) polyunsaturated fatty acids (PUFA) to endotoxemic rats reduces the levels of arachidonic acid (AA) and linoleic acid (LA) in alveolar macrophage (AM) and liver Kupffer and endothelial (K&E) cell phospholipids with attendant decreases in prostaglandin formation by these cells in vitro. Diets that contain α-linolenic acid (LNA) as a substrate for endogenous formation of EPA may not be as effective in facilitating these immune cell modifications given the limited activity of Δ6 desaturase. In the present study we compared the effectiveness of an LNA-enriched diet vs. an (EPA+GLA)-enriched diet to displace phospholipid AA from AM and liver K&E cells in vivo in endotoxemic rats fed enterally for 3 or 6 d. We determined the fatty acid composition of AM and K&E cell phospholipids by gas chromatography. We found that AM and K&E cells from rats that had received the EPA+GLA diet for 3 d had significantly (P<0.001) higher mole percentage of EPA and the GLA metabolite, dihomoGLA, than corresponding cells from rats given the LNA diet or a control diet enriched with LA. Rats given the LNA diet had relatively low levels of stearidonic acid, EPA and other n−3 PUFA, while rats given the LA diet had low levels of GLA and dihomoGLA. We conclude that diets enriched with LNA or LA may not be as effective as those enriched with FPA+GLA for purposes of fostering incorporation of EPA or dihomoGLA into and displacement of AA from macrophage phospholipids under pathophysiologic conditions commonly found in acutely septic patients.  相似文献   

4.
Effects of dietary n−6 and n−3 fatty acids (FAs) on blood pressure (BP) and tissue phospholipid (PL) FA composition in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats were compared. Male weanling SHR and WKY were fed a fat-free semisynthetic diet supplemented with 10% (w/w) fats containing (a) 78% 18∶2n−6 (LA-rich), (b) 20% LA and 55% 18∶3n−3 (LN-rich), or (c) 11% LA and 3% LN (CON) for seven weeks. Dietary fats did not affect the BP elevation, but significantly altered the FA composition of brain, adrenal gland, renal medulla and cortex PL in SHR. The LA-rich diet increased n−6 FA while it reduced n−3 FA levels. The levels of 20∶4n−6 were not significantly different between animals fed the LA-rich and the CON diets. LN-rich diet increased the levels of n−3 FAs, while it reduced those of n−6 FAs. However, the extent of change was significantly less in SHR than in WKY. In all dietary groups, SHR, as compared to WKY, had a relatively higher level of the 2 series prostaglandin (PG) precursor, 20∶4n−6, and a relatively lower level of the 1 and 3 series PG precursors, 20∶3n−6 and 20∶5n−3. The possibility that the unbalanced eicosanoid FA precursor levels might contribute to the development of hypertension in this animal model is discussed.  相似文献   

5.
J. E. Kinsella  P. H. Yu  J. B. Mai 《Lipids》1979,14(12):1032-1036
Trans, trans-linoleate at 50 and 100% of dietary fat decreased kidney size and altered its composition.Trans, trans-linoleate as the sole source of dietary fat imparied growth and caused more severe symptoms of essential fatty acid deficiency than was observed with hydrogenated coconut oil (HCO). The concentration of renal cholesterol, phospholipids (PL), triglycerides (TG) and cholesteryl esters (CE) were also decreased. Linoleic (18∶2), homo-γ-linolenic acid (20∶3n6) and arachidonic acid (20∶4n6) were significantly depressed in lipid classes, especially in PL and CE, by dietarytrans, trans-linoleate. The increase in eicosatrienoate (20∶3n9), especially in PL and CE of kidneys of rats fed HCO (essential fatty acid deficient), was slight in rats fed 100%trans, trans-linoleate, indicating that thetrans, trans acid probably inhibited acyl elongation and desaturation.  相似文献   

6.
Harbige LS 《Lipids》2003,38(4):323-341
The essentiality of n−6 polyunsaturated fatty acids (PUFA) is described in relation to a thymus/thymocyte accretion of arachidonic acid (20∶4n−6, AA) in early development, and the high requirement of lymphoid and other cells of the immune system for AA and linoleic acid (18∶2n−6, LA) for membrane phospholipids. Low n−6 PUFA intakes enhance whereas high intakes decrease certain immune functions. Evidence from in vitro and in vivo studies for a role of AA metabolites in immune cell development and functions shows that they can limit or regulate cellular immune reactions and can induce deviation toward a T helper (Th)2-like immune response. In contrast to the effects of the oxidative metabolites of AA, the longer-chain n−6 PUFA produced by γ-linolenic acid (18∶3n−6, GLA) feeding decreases the Th2 cytokine and immunoglobulin (Ig)G1 antibody response. The n−6 PUFA, GLA, dihomo-γ-linolenic acid (20∶3n−6, DHLA) and AA, and certain oxidative metabolites of AA can also induce T-regulatory cell activity, e.g., transforming growth factor (IGF)-β-producing T cells; GLA feeding studies also demonstrate reduced proinflammatory interleukin (IL)-1 and tumor necrosis factor (TNF)-α production. Low intakes of long-chain n−3 fatty acids (fish oils) enhance certain immune functions, whereas high intakes are inhibitory on a wide range of functions, e.g., antigen presentation, adhesion molecule expression, Th1 and th2 responses, proinflammatory cytokine and eicosanoid production, and they induce lymphocyte apoptosis. Vitamin E has a demonstrable critical role in long-chain n−3 PUFA interactions with immune functions, often reversing the effects of fish oil. The effect of dietary fatty acids on animal autoimmune disease models depends on both the autoimmune model and the amount and type of fatty acids fed. Diets low in fat, essential fatty acid deficient (EFAD), or high in long-chain n−3 PUFA from fish oils increase survival and reduce disease severity in spontaneous autoantibody-mediated disease, whereas high-fat LA-rich diets increase disease severity. In experimentally induced T cell-mediated autoimmune disease, EFAD diets or diets supplemented with long-chain n−3 PUFA augment disease, whereas n−6 PUFA prevent or reduce the severity. In contrast, in both T cell- and antibody-mediated autoimmune disease, the desaturated/elongated metabolites of LA are protective. PUFA of both the n−6 and n−3 families are clinically useful in human autoimmune-inflammatory disorders, but the precise mechanisms by which these fatty acids exert their clinical effects are not well understood. Finally, the view that all n−6 PUFA are proinflammatory requires revision, in part, and their essential regulatory and developmental role in the immune system warrants appreciation.  相似文献   

7.
This study evaluated the effects of dietary supple-mentation with ψ-linolenic acid (GLA, 18∶3n−6) and docosahexaenoic acid (DHA, 22∶6n−3) on the fatty acid composition of the neonatal brain in gastrostomized rat pups reared artificially from days 5–18. These pups were fed rat milk substitutes containing fats that provided 10% linoleic acid and 1% α-linolenic acid (% fatty acids) and, using a 2×3 factorial design, one of two levels of DHA (0.5 and 2.5%), and one of three levels of GLA (0.5, 1.0, and 3.0%). A seventh artificially reared groups served as a reference group and was fed 0.5% DHA and 0.5% arachidonic acid (AA, 20∶4n−6); these levels are within the range of those found in rat milk. The eighth group, the suckled control group, was reared by nursing dams fed a standard American Institute of Nutrition 93M chow. The fatty acid composition of the phosphatidylethanolamine, phosphatidyl-choline, and phosphatidylserine/phosphatidylinositol membrane fractions of the forebrain on day 18 reflected the dietary composition in that high levels of dietary DHA resulted in increases in DHA but decreases in 22∶4n−6 and 22∶5n−6 in brain. High levels of GLA increased 22∶4n−6 but, in contrast to previous findings with high levels of AA, did not decrease levels of DHA. These results suggest that dietary GLA, during development, differs from high dietary levels of AA in that it does not lead to reductions in brain DHA.  相似文献   

8.
Cardiolipins (CL) have unique fatty acid profiles with generally high levels of polyunsaturated fatty acids, primarily 18∶2n−6, and low levels of saturated fatty acids. In order to study the effect of dietary fatty acid isomers on the fatty acid composition of cardiolipins, rats were fed partially hydrogenated marine oils (HMO), rich in 16∶1, 18∶1, 20∶1, and 22∶1 isomeric fatty acids, supplemented with linoleic acid at levels ranging from 1.9% to 14.5% of total fat. Although the dietary fats contained 33%trans fatty acids, the levels oftrans fatty acids in CL were below 2.5% in all organs. The fatty acid profiles of cardiolipins of liver, heart, kidney and testes showed different responses to dietary linoleic acid level. In liver, the contents of 18∶2 reflected the dietary levels. In heart and kidney, the levels of 18∶2 also parallelled increasing dietary levels, but in all groups fed HMO, levels of 18∶2 were considerably higher than in the reference group fed palm oil. In testes, the 18∶2 levels were unaffected by the dietary level of 18∶2 and HMO.  相似文献   

9.
Dhar P  Ghosh S  Bhattacharyya DK 《Lipids》1999,34(2):109-114
The present study examined the antioxidant activity of conjugated octadecatrienoic fatty acid (9 cis, 11 trans, 13 trans-18∶3), α-eleostearic acid, of karela seed (Momordica charantia), fed to rats for 4 wk. The growth pattern of rats and the effect on plasma cholesterol and high density lipoprotein (HDL) cholesterol and peroxidation of plasma lipid, lipoprotein, eryhrocyte membrane, and liver lipid were measured. Rats were raised on diets containing sunflower oil mixed with three different levels of conjugated trienoic fatty acid (9c,11t,13t-18∶3) 0.5,2, and 10% by weight; the control group was raised with sunflower oil as dietary oil as the source of linoleic acid (9c,12c-18∶2). The growth pattern of the three experimental groups of rats showed no significant difference compared to the control group of rats, but the group with 10% 9c,11t,13t-18∶3 had slightly higher body weight than the control group of rats. Concentrations of total cholesterol, HDL-cholesterol, and non-HDL-cholesterol in plasma were similar in all four groups. Plasma lipid peroxidation was significantly lower in the case of 0.5% 9c,11t,13t-18∶3 group than the control group and the 2 and 10% 9c,11t,13t-18∶3 dietary groups as well. Lipoprotein oxidation susceptibility test with 0.5,2 and 10% 9c,11t,13t-18∶3 dietary groups was significantly less susceptible to lipoprotein peroxidation when compared with sunflower oil dietary group, and the dietary group with 0.5% 9c,11t,13t-18∶3 showed least susceptibility. There was significant lowering in erythrocyte ghost membrane lipid peroxidation in the 0.5,2, and 10% 9c,11t,13t-18∶3 dietary groups compared to the sunflower oil groups. Nonenzymatic liver tissue lipid peroxidation was significantly lower in the group of rats raised on 0.5% 9c,11t,13t-18∶3, but the groups on 2 and 10% 9c,11t,13t-18∶3 acid did not show any significant difference compared with the control group of rats.  相似文献   

10.
During heat treatment, polyunsaturated fatty acids and specifically 18∶3n−3 can undergo geometrical isomerization. In rat tissues, 18∶3 Δ9c, 12c, 15t, one of thetrans isomers of linolenic acid, can be desaturated and elongated to givetrans isomers of eicosapentaenoic and docosahexaenoic acids. The present study was undertaken to determine whether such compounds are incorporated into brain structures that are rich in n−3 long-chain polyunsaturated fatty acids. Two fractions enriched intrans isomers of α-linolenic acid were prepared and fed to female adult rats during gestation and lactation. The pups were killed at weaning. Synaptosomes, brain microvessees and retina were shown to contain the highest levels (about 0.5% of total fatty acids) of thetrans isomer of docosahexaenoic acid (22∶6 Δ4c, 7c, 10c, 13c, 16c, 19t). This compound was also observed in myelin and sciatic nerve, but to a lesser extent (0.1% of total fatty acids). However, the ratios of 22∶6trans to 22∶6cis were similar in all the tissues studied. When the diet was deficient in α-linolenic acid, the incorporation oftrans isomers was apparently doubled. However, comparison of the ratios oftrans 18∶3n−3 tocis 18∶3n−3 in the diet revealed that thecis n−3 fatty acids were more easily desaturated and elongated to 22∶6n−3 than the correspondingtrans n−3 fatty acids. An increase in 22∶5n−6 was thus observed, as has previously been described in n−3 fatty acid deficiency. These results encourage further studies to determine whether or not incorporations of suchtrans isomers into tissues may have physiological implications. Presented in part at the 32nd International Conference on the Biochemistry of Lipids, 1991, Granada, Spain. Delta nomenclature (Δ) is used fortrans polyunsaturated fatty acids to specify the position and geometry of ethylenic bonds. Polyunsaturated fatty acids containingtrans double bonds are abbreviated giving the locations of thetrans double bonds only; e.g., 20∶5 Δ17t 20∶5 Δ5c,8c,11c,14c,17t; 22∶5 Δ19t, 22∶5 Δ7c,10c,13c,16c,19t; 22∶6 Δ19t 22∶6 Δ4c,7c,10c,13c,16c,19t.  相似文献   

11.
trans Isometric fatty acids of partially hydrogenated fish oil (PHFO) consist oftrans 20∶1 andtrans 22∶1 in addition to thetrans isomers of 18∶1, which are abundant in hydrogenated vegetable oils, such as in partially hydrogenated soybean oil (PHSBO). The effects of dietarytrans fatty acids in PHFO and PHSBO on the fatty acid composition of milk were studied at 0 (colostrum) and 21 dayspostpartum in sows. The dietary fats were PHFO (28%trans), or PHSBO (36%trans) and lard. Sunflower seed oil (4%) was added to each diet. The fats were fed from three weeks of age throughout the lactation period of Experiment 1. In Experiment 2 PHFO or “fully” hydrogenated fish oil (HFO) (19%trans), in comparison with coconut oil (CF) (0%trans), was fed with two levels of dietary linoleic acid, 1 and 2.7% from conception throughout the lactation period. Feedingtrans-containing fats led to secretion oftrans fatty acids in the milk lipids. Levels oftrans 18∶1 andtrans 20∶1 in milk lipids, as percentages of totalcis+trans 18∶1 andcis+trans 20∶1, respectively, were about 60% of that of the dietary fats, with no significant differences between PHFO and PHSBO. The levels were similar for colostrum and milk. Feeding HFO gave relatively lesstrans 18∶1 andtrans 20∶1 fatty acids in milk lipids than did PHFO and PHSBO. Only low levels ofcis+trans 22∶1 were found in milk lipids. Feedingtrans-containing fat had no consistent effects on the level of polyenoic fatty acids but reduced the level of saturated fatty acids and increased the level ofcis+trans monoenoic fatty acids. Increasing the dietary level of linoleic acid had no effect on the secretion oftrans fatty acids but increased the level of linoleic acid in milk. The overall conclusion was that the effect of dietary fats containingtrans fatty acids on the fat content and the fatty acid composition of colostrum and milk in sows were moderate to minor.  相似文献   

12.
This study investigated the influence of dietary arachidonic acid (20∶4n-6) on Δ5 desaturation and incorporation of deuterium-labeled 8cis, 11cis, 14-eicosatrienoic acid (20∶3n-6) into human plasma lipids. Adult male subjects (n=4) were fed diets containing either 1.7 g/d (H120∶4 diet) or 0.21 g/d (LO20∶4 diet) of arachidonic acid for 50 d and then dosed with a mixture containing ethyl esters of 20∶3n-6[d4] and 18∶1n-9[d2]. A series of blood samples was sequentially drawn over a 72-h period, and methyl esters of plasma total lipid, triacylglycerol, phospholipids, and cholesteryl ester were analyzed by gas chromatography-mass spectrometry. Based on the concentration of 20∶3n-6[d4] in total plasma lipid, the estimated conversion of 20∶3n-6[d4] to 20∶4n-6[d4] was 17.7.±0.79% (HI20∶4 diet) and 2.13±1.44% (LO20∶4 diet). The concentrations of 20∶4n-6[d4] in total plasma lipids from subjects fed the HI20∶4 and LO20∶4 diets were 2.10±0.6 and 0.29±0.2 μmole/mL plasma/mmole of 20∶3n-6[d4] fed/kg of body weight. These data indicate that conversion of 20∶3n-6[d4] to 20∶4n-6[d4] was stimulated 7-8-fold by the HI20∶4 diet. Phospholipid acyltransferase was 2.5-fold more selective for 20∶3n-6[d4] than 18∶1n-9[d2], and lecithin:cholesterol acyltransferase was 2-fold more selective for 18∶1n-9[d2] than 20∶3n-6[d4]. These differences in selectivity were not significantly influenced by diet. Absorption of ethyl 20∶3n-6[d4] was about 33% less than ethyl 18∶1n-9[d2]. The sum of the n-6 retroconversion products from 20∶3n-6[d4] in total plasma lipids was about 2% of the total deuterated fatty acids. Neither absorption nor retroconversion appears to be influenced by diet.  相似文献   

13.
The effect of various dietary fats on membrane lipid composition, fatty acid profiles and membrane-bound enzyme activities of rat cardiac sarcolemma was assessed. Four groups of male weanling Charles Foster Young rats were fed diets containing 20% of groundnut, coconut, safflower or mustard oil for 16 weeks. Cardiac sarcolemma was prepared from each group and the activities of Na+,K+-ATPase, 5′-nucleotidase, Ca2+-ATPase and acetylcholinesterase were examined. ATPase activities were similar in all groups except the one fed coconut oil, which had the highest activities. Acetylcholinesterase activity was also similar in all the groups, however, it was significantly higher in the group fed mustard oil. No significant changes were observed among the groups in 5′-nucleotidase activity, in the cholesterol-to-phospholipid molar ratio and in sialic acid content. The coconut, safflower and mustard oil diets significantly increased cholesterol and phospholipid contents and the lipid-to-protein ratio of cardiac sarcolemma as compared to feeding the groundnut oil diet. The fatty acid composition of membrane lipids was quite different among the various groups, reflecting the type of dietary fat given. The total unsaturated-to-saturated fatty acid ratio was not different among the various groups; however, the levels of some major fatty acids such as palmitic (16∶0), oleic (18∶1) and linoleic (18∶2) acids were significantly different. Cardiac sarcolemma of the group fed safflower oil had the highest polyunsaturated fatty acid content. The results suggest that dietary fats induce changes not only in the fatty acid composition of the component lipids but also in the activities of sarcolemmal enzymes involved in the regulation of cardiac function.  相似文献   

14.
The mammary tumor-promoting effect of a high-fat diet containing 20% evening primrose oil (PO) was compared to that of a 20% corn oil (CO) diet. Mammary tumors were induced in female Sprague-Dawley rats using 10 mg (Study 1) and 5 mg (Study 2) 7,12-dimethylbenz(a)anthracene (DMBA). The 10 mg dose of DMBA gave a total mammary tumor incidence of 47% in rats fed the PO diet and 80% for those fed the CO diet. When only adenocarcinomas were counted, the malignant mammary tumor incidences were 41% in rats fed the PO diet and 73% in rats fed the CO diet. In a second study using 5 mg DMBA to induce mammary tumors, total tumor incidences were 50% for PO-fed rats and 63% for those receiving a CO diet. Again, when only adenocarcinomas were counted, tumor incidences were 27% for PO- and 63% for CO-dieted rats. Analysis of plasma fatty acid profiles indicated that animals fed a 20% PO diet showed significant increases in 18∶3 and 20∶4 fatty acids and significant decreases in 16∶0 and 18∶1 compared to animals fed a 20% CO diet. These results indicate that the mammary tumor promoting effect of a diet containing 20% fat can be diminished by substituting PO for CO. Moreover, the promoting effect on mammary cancer by a high-fat diet could be depressed by feeding a source of γ-linolenic acid (GLA).  相似文献   

15.
Forty-nine plant species from Spain, belonging to the Boraginaceae, Scrophulariaceae, Onagraceae, and Ranunculaceae families, were surveyed in a search of new sources of γ-linolenic acid (18∶3ω6, GLA). Fatty acid profiles from seeds, stems, roots, flowers and leaves were determined. GLA was detected mainly in seed and root tissues. High GLA amounts were found in seeds of Boraginaceae species, with a maximum of 20.25% of total fatty acids in Myosotis nemorosa. Within the Scrophulariaceae the highest GLA content (10.17%) was found in Scrophularia sciophila. Variable amounts of stearidonic acid, (18∶4ω3, SDA) were present in Boraginaceae species, ranging from 0.08% of total seed fatty acids in Anchusa azurea to 21.06% in Echium asperrimum. SDA was also very abundant in all organs of Asperugo procumbens. A multivariate analysis was performed using our results and those reported for other plant species belonging to the same families in order to investigate a possible correlation between the fatty acid profile and the genera within these families.  相似文献   

16.
Mixtures of triglycerides containing deuterium-labeled hexadecanoic acid (16∶0), octadecanoic acid (18∶0),cis-9-octadecenoic acid (9c–18∶1),cis-9,cis-12-octadecadienoic acid (9c, 12c–18∶2) andcis-12,trans-15-octadecadienoic acid (12c,15t–18∶2) were fed to two young-adult males. Plasma lipid classes were isolated from samples collected periodically over 48 hr. Incorporation and turnover of the deuterium-labeled fats in plasma lipids were followed by gas chromatography-mass spectrometry (GC-MS) analysis of the methyl ester derivatives. Absorption of the deuterated fats was followed by GC-MS analysis of chylomicron triglycerides isolated by ultracentrifugation. Results were the following: (i) endogenous fat contributed about 40% of the total fat incorporated into chylomicron triglycerides; (ii) elongation, desaturation and chain-shortened products from the deuterated fats were not detected; (iii) the polyunsaturated isomer 12c,15t–18∶2 was metabolically more similar to saturated and 9c–18∶1 fatty acids than to 9c,12c–18∶2 (iv) relative incorporation of 9c,12c–18∶2 into phospholipids did not increase proportionally with an increase of 9c,12c–18∶2 in the mixture of deuterated fats fed; (v) absorption of 16∶0, 18∶0, 9c–18∶1, 9c,12c–18∶2 and 12c,15t–18∶2 were similar; and (vi) data for the 1- and 2-acyl positions of phosphatidylcholine and for cholesteryl ester fractions reflected the known high specificity of phosphatidylcholine acyltransferase and lecithin:cholesteryl acyltransferase for 9c,12c–18∶2. These results illustrate that incorporation of dietary fatty acids into human plasma lipid classes is selectively controlled and that incorporation of dietary 9c,12c–18∶2 is limited. These results suggest that nutritional benefits of diets high in 9c,12c–18∶2 may be of little value to normal subjects and that the 12c,15t–18∶2 isomer in hydrogenated fat is not a nutritional liability at the present dietary level.  相似文献   

17.
Fu Z  Sinclair AJ 《Lipids》2000,35(4):395-400
The essential fatty acids do not have identical roles in nutrition. Linoleic acid (LA) accumulates throughout the body of most mammals, whereas α-linolenic acid (ALA) is rarely found in tissue lipids to the same extent as LA. It has been argued that this is the result of metabolism of ALA to docosahexaenoic acid (DHA) or that ALA is rapidly β-oxidized to acetyl CoA and CO2. In this study, we consider the effect of high and low ALA levels on the tissue distribution of ALA and other n-3 polyunsaturated fatty acids (PUFA) in all tissues. Guinea pigs were fed one of two defined diets for 3 wk from wearning with both diets containing 1.8% (by weight) of LA and either 1.7% ALA or 0.03% ALA. The high ALA diet was associated with significantly increased ALA levels in all tissues except the brain and significantly increased levels of long-chain n-3 PUFA in all tissues except intestines, brain, carcass, and skin. The long-chain n-3 PUFA content of the whole body was less than 5% of that of the ALA content in both diet groups, and the major long-chain n-3 PUFA (>66% of total) in the body was 22∶5n−3. The brain was the only tissue where the DHA content exceeded that of 22∶5n−3. On the low ALA diet, there appeared to be conservation of ALA based on a comparison of the ratio of LA to ALA in the tissues compared with that in the diet. On the high ALA diet there was a loss of ALA relative to LA in the tissues compared with the diet. These studies suggest that the low levels of tissue ALA in the guinea pig are likely the result of β-oxidation or excretion via the skin and fur rather than metabolism to DHA.  相似文献   

18.
Male weanling rats were fed semi-synthetic diets high in saturated fat (beef tallow) vs high in linoleic acid (safflower oil) with or without high levels of α-linolenic acid (linseed oil) for a period of 28 days. The effect of feeding these diets on cholesterol content and fatty acid composition of serum and liver lipids was examined. Feeding linseed oil with beef tallow or safflower oil had no significant effect on serum levels of cholesterol. Serum cholesterol concentration was higher in animals fed the safflower oil diet than in animals fed the beef tallow diet without linseed oil. Feeding linseed oil lowered the cholesterol content in liver tissue for all dietary treatments tested. Consumption of linseed oil reduced the arachidonic acid content with concomitant increase in linoleic acid in serum and liver lipid fractions only when fed in combination with beef tallow, but not when fed with safflower oil. Similarly, ω3 fatty acids (18∶3ω3, 20∶5ω3, 22∶5ω3, 22∶6ω3) replaced ω6 fatty acids (20∶4ω6, 22∶4ω6) in serum and liver lipid fractions to a greater extent when linseed oil was fed with beef tallow than with safflower oil. The results suggest that the dietary ratio of linoleic acid to saturated fatty acids or of 18∶3ω3 to 18∶2ω6 may be important to determine the cholesterol and arachidonic acid lowering effect of dietary α-linolenic acid.  相似文献   

19.
Meadowfoam oil is unusual because over 95% of the fatty acids are 20- and 22-carbon aliphatic acids withcis double bonds located principally at the 5- and/or 13-position. Since little information is available on the metabolism of the 5c−20∶1 and 5c,13c−22∶2 fatty acids, an exploratory study in mice was conducted to investigate the metabolism of purified samples of the free fatty acids isolated from meadowfoam oil, and to determine the effect of meadowfoam oil on weight gain and tissue lipid composition. Mice fed diets containing 5% by wt of the purified 5c−20∶1 or 5c,13c−22∶2 for 6 days exhibited no apparent physiological problems. Total liver lipids from mice fed the purified fatty acid diets contained mean values of 2.0% 5c−20∶1 and 2.1% 5c,13c−22∶2; total heart lipids contained 1.7% 5c−20∶1 and 10.7% 5c,13c−22∶2. Liver total phospholipids from mice fed a 5% meadowfoam oil diet for 19 wk contained 1.4% 5c−20∶1 and 1.9% 5c,13c−22∶2. There was no evidence of desaturation, elongation or retroconversion. Weight gain for mice fed the meadowfoam oil diet for 19 wk was similar to mice fed corn oil, and was higher than for mice fed hydrogenated cottonseed oil. Considering the high 5c−20∶1 and 5c,13c−22∶2 content of the diets, the percentages of these fatty acids in mouse tissue lipids from both the short- and long-term studies were low. Weight gain was surprisingly good since the meadowfoam oil diet was essential fatty acid-deficient. Results of this initial investigation suggest that the 5c−20∶1 and 5c,13c−22∶2 fatty acids were utilized primarily for energy. In the short-term study, these fatty acids did not produce toxic effects or cause metabolic problems. The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

20.
Twenty-one groups of weanling male Wistar rats were fed semipurified diets containing 5% (w/w) of different dietary fats. After 2 wk, liver sphingomyelin (SM) fatty acid composition was determined. The ratio of 24∶1 to 24∶0 in liver SM varied over a tenfold range in response to dietary fat type. Stepwise multiple regression analysis indicated that dietary 24∶1, 24∶0, and 22∶1 were the most significant factors in predicting the 24∶1/24∶0 ratio of liver SM. The mathematical relation between the dietary fatty acid composition and liver SM 24∶1/24∶0 was y=1.88 (24∶1)−1.49 (24∶0)+0.21 (22∶1)+0.01 (18∶1)+0.26, r 2=0.95, P<0.0001. These results were confirmed by a second experiment in which the rats were fed olive oil-based diets supplemented with various fatty acid ethyl esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号