首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
For modern gas sensors, low power consumption is expected. It is well known that with low temperature cofiring technology (LTCC) small compact sensors can be constructed. Compared with standard devices on alumina such sensors consume less power due to their lower thermal conductivity. However, simple replacement of substrate materials is not sufficient. LTCC offers the possibility to structure unfired tapes easily. Therefore, the sensor substrate may have almost any desired shape. In our first investigations, we showed that ceramic hot plates could be successfully constructed in LTCC technology. In contrast to standard configuration of thick-film gas sensors on alumina or even on LTCC, the hot plate principle allows to reduce significantly power consumption. Our tests showed possibilities to further decrease power consumption by laser forming of suspended beams. The obtained results were very promising and induced continuation of these works. This article shows recent results of investigations on hot plate structures. Tapes from different manufacturers have been used for sensor construction. The sensors were made by laser structuring of printed unfired LTCC tapes. Samples were evaluated by measurement and analysis of electrical properties as well as by long-term tests of integrated heaters. Design issues as well as stability issues are discussed in this contribution.  相似文献   

2.
SnO2 thin-film gas sensors have been successfully fabricated on nanospiked polyurethane polymer surfaces, which are replicated by a low-cost soft nanolithography method from silicon nanospike structures formed with femtosecond laser irradiations. Measurements revealed significant response to carbon monoxide (CO) gas at room temperature, which is considerably different from the sensors of SnO2 thin films coated on smooth surfaces that show no response to CO gas at room temperature. The high area/volume ratio and sharp structures of the nanospikes enhance the sensitivity of SnO2 at room temperature. This will greatly decrease the electrical power consumption of the gas sensor and the cost for calibrations, and has great potential for application in other sensing systems.  相似文献   

3.
Many recent efforts are directed toward developing high-performance gas sensors based on metal oxide nanostructures operating at room temperature, as it lowers the power consumption, simplifies the device fabrication as well as improves the safety and stability of the sensors. The light-activated gas sensing technology was intensively studied because of its high effectiveness in improving the gas sensing performance of metal oxide nanostrctures at room temperature. This review is covers comprehensive advances in the emerging and feasible approaches for improving nanostructured metal oxide-based gas sensors by light activation, especially the progresses made in the last five years. We first summarize the effects of light-activation on gas sensing behavior of metal oxide nanostructures with some new insights into the related mechanisms. For enhancing the light-activated gas-sensing performance some possible strategies are then introduced, which include the modification of the size, dimension, nanoarchitecture, porous or hierarchical structure and doping or defect engineering, as well as the construction of nanocomposite sensing materials. Finally, some recent developments in light source and device structure design towards low power gas sensor systems are discussed. We hope that this review would provide some useful information to the design of light-activated metal oxide gas sensors operating at room temperature.  相似文献   

4.
Low-temperature co-fired ceramic (LTCC) enables development and testing of critical elements on microsystem boards as well as nonmicroelectronic meso-scale applications. We describe silicon-based microelectromechanical systems packaging and LTCC meso-scale applications. Microfluidic interposers permit rapid testing of varied silicon designs. The application of LTCC to micro-high-performance liquid chromatography (μ-HPLC) demonstrates performance advantages at very high pressures. At intermediate pressures, a ceramic thermal cell lyser has lysed bacteria spores without damaging the proteins. The stability and sensitivity of LTCC/chemiresistor smart channels are comparable to the performance of silicon-based chemiresistors. A variant of the use of sacrificial volume materials has created channels, suspended thick films, cavities, and techniques for pressure and flow sensing. We report on inductors, diaphragms, cantilevers, antennae, switch structures, and thermal sensors suspended in air. The development of "functional-as-released" moving parts has resulted in wheels, impellers, tethered plates, and related new LTCC mechanical roles for actuation and sensing. High-temperature metal-to-LTCC joining has been developed with metal thin films for the strong, hermetic interfaces necessary for pins, leads, and tubes.  相似文献   

5.
Metal oxide semiconductors with branched structures, such as branched nanowires (b-NWs), have promising properties for being used in gas sensors. In this work, we synthesized Pt-decorated Bi2O3-branched SnO2 nanowires (NWs). NO2 sensing studies revealed the superior capacity of a Pt-decorated Bi2O3-branched SnO2 NWs gas sensor relative to pristine and branched SnO2 gas sensors, and it worked at near room temperature (50 °C). The increased sensing capacity was related to the synergistic effects of Pt decoration and Bi2O3 branching, particularly the morphology of the gas sensor with branched structures, the promising effects of Pt as a noble metal with good catalytic activity, and the generation of homo- and heterojunctions in the Pt-decorated Bi2O3-branched SnO2 NWs gas sensor. The results obtained in this work are useful for design and development of NO2 gas sensors using a simple strategy, which can be easily extended to various metal oxides.  相似文献   

6.
In this study, structural, morphological and optical properties, and gas sensor performance of magnesium oxide (MgO) doped titanium dioxide (TiO2) thin films were investigated in detail. Gas sensor metallic patterns were fabricated on Si substrate using traditional photolithographic technique. MgO doped TiO2 thin films were deposited on formed Pt electrode surface by confocal sputtering (co-sputtering) system as the active layer. Thin film characterizations were realized by using secondary ion mass spectroscopy (SIMS), atomic force microscope (AFM) and UV–Vis Spectrometer (UV–Vis). Gas sensing measurements were performed by gas sensing test system against methane gas at working temperature of 300?°C. To evaluate deposition and thermal annealing effects on the sensing performance, sensors were tested under gas. The sensitivity and response/recovery time of gas sensors were measured in 1000?ppm. MgO doped TiO2 based sensor at substrate temperature of 100?°C has high sensitivity and short response/recovery time.  相似文献   

7.
Use of zeolite films to improve the selectivity of reactive gas sensors   总被引:5,自引:0,他引:5  
Semiconductor (Pd-doped SnO2) gas sensors covered with zeolitic films (MFI or LTA) have been developed and used for gas phase sensing of different species (methane, propane, and ethanol) at different humidity levels. The dynamic responses obtained with these sensors were compared with the response of a reference sensor without a zeolitic layer. The results clearly indicate that a suitable zeolite layer strongly reduces, and in some cases suppresses, the response of the sensor to paraffins, thereby increasing the sensor selectivity to the alcohol, while the reference sensor could not discriminate between these molecules. This clearly shows the potential of zeolite-based sensors to achieve a higher selectivity/sensitivity in gas sensing applications.  相似文献   

8.
The electrical and microstructural characteristics of 1 kΩ/sq thick-film thermistors with high positive temperature coefficients of resistivity, i.e., PTC 5093 (Du Pont) fired either on “green” LTCC (low-temperature co-fired ceramics) substrates or buried within LTCC structures, were evaluated. The thermistors were fired at different temperatures to study the influence of firing temperature on the electrical characteristics. The noise indices of the surface resistors fired at temperatures between 850 °C and 950 °C were very low, around −30 dB. The TCRs of the evaluated PTC thermistors were over 3000 × 10−6/K. The dependence of the resistivity on the temperature between −25 °C and 125 °C was linear, with the values of R2 being better than 0.9999, regardless of the processing conditions. These results show that PTC thermistors co-fired on LTCC substrates can be used for temperature sensors in MCM-Cs as well as in MEMS structures. However, when the thermistors were buried in the LTCC substrates, the LTCC structures delaminated during firing and blisters formed, leading to high sheet resistivities and high noise indices. This delamination is attributed to the different sintering rates of the PTC and LTCC materials as well as to the expansion of the air bubbles captured in the viscous glass of the PTC material.  相似文献   

9.
《Ceramics International》2019,45(12):15134-15142
The demand for the development of gas sensors operable at room temperature is increasing due to the uncountable drawbacks of high temperature gas sensors. This contribution describes the fabrication of room temperature ethanol sensor. The synthesis of NiO semi shielded SnO2 (NiO/SnO2) nanocomposites (NCs) was done via a simple two-step process, started with co-precipitation technique and then followed by sol-gel method. High resolution electron microscope (HRTEM) results indicated the semi shielding of NiO on SnO2 nanoparticles (NPs). Surface morphological studies of the fabricated sensors show the porous nature of the samples which further helps in enhanced sensing response. X-ray photoelectron spectroscope (XPS) results of NiO/SnO2 NCs revealed the valence states of Ni (+2) and Sn (+4). Excellent gas sensing response of the NiO/SnO2 sensor towards ethanol at room temperature was observed from the gas sensing studies. The response of NiO/SnO2 (∼140) was nearly 9 times higher than SnO2 sensor (∼15) and nearly 11 times higher than NiO sensor (12.98) towards 100 ppm ethanol at room temperature. The observed response and recovery times of NiO/SnO2 were 23 s and 13 s respectively. The p-n heterostructure formed between p-NiO and n-SnO2, and high chemical sensitization and catalytic activity of the NiO are the main contributors for the excellent sensing performance of NiO/SnO2 sensor.  相似文献   

10.
Diamond has attractive properties as an advanced electronic material. Its combination of high carrier mobility, electric breakdown, and thermal conductivity results in the largest calculated figures of merit for speed and power of any material. Previously (J.L. Davidson, W.P. Kang, Examples of diamond sensing applications, Proceedings 3rd International Symposium on Diamond Film (ISDF-3), Polytechnical Institute of Russian Academy of Science, St. Petersburg, Russia, 16–19 June 1996) we reported the discovery and development of useful ‘secondary’ effects in diamond and applying them to interesting sensor applications. For example, boron-doped diamond piezoresistors for strain micro-gauges on rugged MEMS (microelectromechanical structures) pressure and acceleration sensors. This paper will present some recent developments with chemically vapor-deposited diamond for microelectromechanical sensing applications such as a new design all diamond pressure microsensor that measures pressure at high temperatures and an accelerometer with over 45 kHz resonant frequency. Also, presented are recent results on layered diamond films that behave as chemical sensors measuring hydrogen, oxygen and many other chemicals’ concentration. For example, a diamond-based chemical gas sensor using Pt/SnOx/i-diamond/p+-diamond metal–insulator–semiconductor diode structure for oxygen sensing is described. In addition, the latest emission properties of fabricated diamond microtips for field emitters are reviewed.  相似文献   

11.
A planar catlytic combustion gas sensor based on Pd/Pt catalyst supported on F-doped SnO2 nano-crystalline materials has been designed and fabricated for hydrogen detection. The sensor consists of platinum heaters on an alumina plate coated with a catalytic layer and compensating layer. This sensor exhibited better performance than that of the sensors employing sensing material of Pd/Pt catalyst on γ-Al2O3 and of Pd/Pt catalyst on nano-crystalline SnO2. The detection limit of the sensor at 370 °C is in the concentration range of 0.5–5% (v/v), with an excellent linearity of signal voltage to the hydrogen gas concentration.  相似文献   

12.
Flammable, explosive and toxic gases, such as hydrogen, hydrogen sulfide and volatile organic compounds vapor, are major threats to the ecological environment safety and human health. Among the available technologies, gas sensing is a vital component, and has been widely studied in literature for early detection and warning. As a metal oxide semiconductor, zinc ferrite (ZnFe2O4) represents a kind of promising gas sensing material with a spinel structure, which also shows a fine gas sensing performance to reducing gases. Due to its great potentials and widespread applications, this article is intended to provide a review on the latest development in zinc ferrite based gas sensors. We first discuss the general gas sensing mechanism of ZnFe2O4 sensor. This is followed by a review of the recent progress about zinc ferrite based gas sensors from several aspects: different micro-morphology, element doping and heterostructure materials. In the end, we propose that combining ZnFe2O4 which provides unique microstructure (such as the multi-layer porous shells hollow structure), with the semiconductors such as graphene, which provide excellent physical properties. It is expected that the mentioned composites contribute to improving selectivity, long-term stability, and other sensing performance of sensors at room or low temperature.  相似文献   

13.
《Ceramics International》2022,48(17):24213-24233
In recent years, gas sensors fabricated from gallium oxide (Ga2O3) materials have aroused intense research interest due to the superior material properties of large dielectric constant, good thermal and chemical stability, excellent electrical properties, and good gas sensing. Over the past decades, Ga2O3-based gas sensors experienced rapid development. The long-term stable Ga2O3-based gas sensors for detecting oxygen and carbon monoxide have been commercialized and renowned with extremely good gas sensing characteristics. Recent pioneering studies also exhibit that the Ga2O3-based gas sensors possess great potentials in applications of detecting nitrogen oxides, hydrogen, volatile organic compounds and ammonia gases. This article presents recent advances in gas sensing mechanism, device performance parameters, influence factors, and applications of Ga2O3-based gas sensors. The impacts of influence factors, doping, material structure and device structure on the performance of gas sensors are discussed in detail. Finally, a brief overview of challenges and opportunities for the Ga2O3-based gas sensors is presented.  相似文献   

14.
《Ceramics International》2017,43(14):11123-11131
Development of efficient room temperature ammonia (NH3) gas sensor from one pot synthesized zinc oxide (ZnO) – polyaniline (PANI) nanocomposite is reported in the present article. Prior to gas sensing study, the material is characterized to understand the structural, morphological, compositional, optical and thermal properties. Structural and morphological studies indicate good incorporation of ZnO particles in PANI matrix. The gas sensing efficiency of ZnO-PANI nanocomposite is examined at room temperature for ethanol (C2H5OH), methanol (CH3OH) and NH3 gas. The results confirm that ZnO-PANI nanocomposite to be highly selective for NH3 with fast response time and better stability. The response and recovery times are observed to be significantly dependent on NH3 concentration and the lowest detectivity limit of the sensor for NH3 is found 10 ppm. ZnO-PANI nanocomposite shows better gas sensing efficiency as compared to the sensors developed from single phase PANI film.  相似文献   

15.
A comparative study was made of sorted semi-conducting single walled carbon nanotube (SWCNT) films and unsorted SWCNT films for gas sensing applications. The transmission line method is used to monitor separately the SWCNTs film resistance and the contact resistance between electrodes and the SWCNTs, thus revealing that the sensing mechanism mainly relies on a modification of the tube conductivity during gas exposure. The fabricated sensors demonstrate a detection limit of 20 ppb NO2 and 600 ppb NH3 mainly attributed to experimental setup limitations. Moreover, semi-conducting nanotubes happened to be 2.5 times more sensitive to NH3 than unsorted ones, thus proving that selectivity can be improved by sorting the SWCNTs. The temperature dependence of the sensor sensitivity was studied, and a good agreement was found between experimental results and the Langmuir adsorption model.  相似文献   

16.
The response of pristine, nitrogen and boron doped carbon nanotube (CNT) sensors to NO2, CO, C2H4 and H2O at ppm concentrations was investigated at both room temperature and 150 °C. N-doped CNTs show the best sensitivity to nitrogen dioxide and carbon monoxide, while B-doped CNTs show the best sensitivity to ethylene. All tubes (including undoped) show strong humidity response. Sensing mechanisms are determined via comparison with density functional calculations of gas molecule absorption onto representative defect structures in N and B-doped graphene. N-CNTs show decreased sensitivity with temperature, and detection appears to occur via gas physisorption. B-CNTs appear to react chemically with many of the absorbed species as shown by their poor baseline recovery and increasing sensitivity with temperature. This limits their cyclability. Overall gas sensitivity is as good or better than post-growth functionalised nanotubes, and used in combination, CNTs, N-CNTs and B-CNTs appear highly promising candidates for cheap, low power, room temperature gas sensing applications.  相似文献   

17.
Tin oxide is an n-type semiconducting material having superior properties that can be utilized in several applications. The warning and detection of several dangerous gases in the environment are possible by utilizing gas sensors. The comprehensive functionality of these sensors could help to reduce the risk of severe health hazards and unexpected explosion risks. Tin oxide-based gas sensors exhibit reliable gas sensing performances along with respectful sensitivity and selectivity. Tin oxides in micro-and nano-particle forms provide an extremely high surface-to-volume ratio, which is favorable for gas sensors. Processing and synthesis of tin oxide particles accompany high-temperature processes, and this paper focuses on studying the effect of sintering temperatures on the structural and grain size of the commercially available tin oxide particles. The surface morphology of the tin oxide samples sintered at three different temperatures of 1100, 1200, 1300 °C shows a clear difference in the grain size and further affecting the dielectric properties of the materials. The gas sensing performances of three tin oxide samples are investigated by fabricating a pellet-type gas sensor. The sensor with the sintering temperature of 1200 °C exhibits the best gas-sensing performance with high response and low limit of detection (LOD). Our results suggest that the sintering temperature plays a vital role in deciding the dielectric properties and grain sizes, which are important parameters that affect the gas sensing behavior of tin oxide micro-and nano-particles.  相似文献   

18.
张云  汪洋  郑凯 《水泥工程》2015,28(3):6-10
根据水泥工业中大量使用的罗茨风机对温度监测的需求,提出了一种基于无线传感器网络的温度监测节点的设计方法并实现了数据的路由,使传感器采集的温度数据能够传输至协调器节点并由上位机进行处理,从而实现了多点温度的在线监测。此设计中把降低节点功耗作为最为关键的性能要求,选择器件时,在保证运行速度的前提下,尽可能选用功耗低的器件来完成无线传感器网络传感器节点的硬件设计和制作,对于传感器输出可能出现的尖峰,则采用了一种改进的数字滤波算法进行处理,因而取得了高可靠性和低能耗两者的平衡。  相似文献   

19.
《Ceramics International》2020,46(10):15858-15866
The bimetallic metal-organic frameworks (MOF) Zn/Cu-BTC were prepared by a facile solvothermal method in one step and used as a self-sacrificed template to obtain the ZnO/CuO composites. The composites with different Cu/Zn molar ratios were characterized by XRD, FESEM, and XPS. The ZnO/CuO composite exhibited an octahedral structure, and a p-n heterojunction may be formed between p-type CuO and n-type ZnO. To prove its functional characteristics, the ZnO/CuO composite was used as a sensing material to test its gas sensitivity. The effect of Cu/Zn molar ratios was examined, and the results showed that the optimized ZnO/CuO (1: 0.33) composite based gas sensor exhibited reasonable selectivity to 10 ppm H2S, operated at 40 °C. The sensitivities were improved by 17.1 times and 327.8 times compared with the pristine CuO and ZnO based gas sensors, respectively. Moreover, the detection limit to H2S of such sensors could be reduced as low as 300 ppb. The sensing mechanism has been thoroughly studied and such ZnO/CuO composite is an ideal candidate for highly sensitive detection for H2S with low power consumption in the real application.  相似文献   

20.
《Ceramics International》2020,46(11):18675-18682
For real-time environmental monitoring and gas detection under harsh conditions, gas sensors with high reliability, sensitivity, and selectivity are in increasing demand. Therefore, pine-branch-like α-Fe2O3/TiO2 with a core–shell hierarchical heterojunction structure was designed and fabricated for ethanol sensing. The heterojunction increased the O adsorption, resulting in the formation of more chemisorbed O species for reaction with the target gas. Moreover, the pine-branch-like morphology formed three-dimensional hollow holes as channels for molecule diffusion and adsorption. Compared with gas-proof structures, the hollow regions can realize gas diffusion in the inner and outer surfaces of materials simultaneously. Further, in contrast to aggregated structures, the fibers were separated from each other, and charge conduction between the fibers needed to pass through the surface sensing layer at the fiber boundary; thus, the overall resistance change of the sensors was significantly affected by the response of the heterojunction to the target gas. Consequently, the α-Fe2O3/TiO2 sensor exhibited a high response value of 40.4 toward 500 ppm ethanol gas and had excellent selectivity to ethanol. The proposed strategy may facilitate the design and construction of effective heterojunctions and nanostructures for gas sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号