首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This investigation deals with laser remelting of plasma sprayed alumina and chromia coatings. The time-temperature history of the laser remelted zone was recorded using an infrared pyrometer during the remelting operation. Cooling rates, under varying scanning speed, were determined from the time temperature curve. Surface morphology, microstructure, and phases of the laser treated and as-sprayed coatings were characterized using scanning electron microscopy, optical microscopy, X-ray diffraction, respectively. X-ray diffraction was also employed to measure the surface residual stress of the coatings. Inherent features of plasma sprayed coatings like porosity and inter-lamellar boundary were obliterated upon laser remelting. A columnar grain growth perpendicular to the laser scanning direction was observed. The range of roughness of the as-sprayed coatings reduced from 6 to 8?µm to 1–2?µm in the remelted layers. For both coatings, more than 90% reduction in porosity was found upon laser remelting. Surface residual stress of the as-sprayed alumina and chromia coatings was found to be tensile and compressive, respectively. Within the limits of the testing condition the tensile residual stress of the remelted layers increased by up to around 500% in the alumina coatings. In the chromia coating a decrease of compressive stress by up to around 80% was recorded. In the remelted layer the tensile nature of the stress showed a tendency to increase with an increase in the cooling rate. However, the state of stress of the as-sprayed layer, i.e., tensile or compressive, was retained in the remelted layer. The residual stress was found to decrease in the remelted layer with an increase in the degree of overlap of the remelted tracks.  相似文献   

2.
Mild steel substrates were coated with commercially available alumina and chromia powders using the powder flame spraying process. The top layers of the flame sprayed coatings were remelted using a 2?kW fiber laser. Thermo-cycles of the laser remelting process were monitored on-line using an infrared pyrometer. Cooling rates were varied using different laser scanning speeds. Surface morphology, microstructure and phases of the laser treated and as-sprayed coatings were investigated using optical microscopy, scanning electron microscopy, X-ray diffraction and X-ray tomography. Surface residual stress of the as-sprayed and laser treated coatings was measured using X-ray diffraction. The inherent defects like porosity and inter-lamellar boundary diminish to a great extent upon laser remelting. Surface residual stress of the remelted coatings tends to increase with increase in cooling rate. Surface crack density of the laser treated coating was reduced appreciably when coatings were preheated prior to laser remelting.  相似文献   

3.
Cavitation erosion resistance of 8 wt.% yttria stabilized zirconia has been investigated in specimens prepared by atmospheric plasma spraying and laser remelting post treatment. The results indicate that as-sprayed coatings involve defects such as primary cavities and initial micro cracks inside a particle and among the interfaces of particles. When the specimens are subjected to cavitation erosion, the micro cracks initiate and coalesce along with chip removals. Laser remelting produces a dense glazed layer with some cracks though the coatings. With the increasing of erosion time, large pieces are delaminated from coating-substrate interface leading to a significant mass loss. However, the resistance of laser remelted coatings to cavitation erosion is significantly improved when they are impregnated with epoxy by vacuum castable mounting. The relationship between cracks formed inside the laser remelted YSZ coatings and their damage mechanism under cavitation is discussed.  相似文献   

4.
本文介绍了激光重熔等离子喷涂陶瓷涂层的研究进展,并对其进行了展望。激光重熔使等离子喷涂涂层致密性提高,涂层与基体的结合方式由机械结合为主改为冶金结合为主,层状组织变化为柱状组织;激光重熔使等离子喷涂涂层的热疲劳抗力、耐蚀性、耐磨性、抗高温氧化性等性能提高。指出了激光重熔等离子喷涂陶瓷涂层目前存在的问题,探讨了激光重熔等离子喷涂陶瓷涂层易产生裂纹,甚至发生涂层剥落等问题的原因,提出了激光重熔技术的研究方向。  相似文献   

5.
Aiming to improve the thermal shock resistance of thermal barrier coatings (TBCs), the plasma-sprayed 7YSZ TBCs were modified by selective laser remelting and selective laser alloying, respectively, in this study. A self-healing agent TiAl3 was introduced into the 7YSZ TBCs by selective laser alloying to fill cracks during thermal cycling. The thermal shock experiments of the plasma-sprayed, laser-remelted, and laser-alloyed TBCs were conducted by a means of heating and water-quenching method. Results revealed that some segmented microcracks were distributed on the surface of the laser-remelted and the laser-alloyed zones, showing a dense columnar crystal structure. After thermal shock tests, the numbers of segmented microcracks on the laser-remelted coating increased, whereas, in the laser-alloyed condition, some irregular particles formed, leading to the decreased numbers of segmented microcracks. The laser-alloyed coating exhibited the best thermal shock resistance, followed by the laser-remelted condition, with the thermal shock lifetime 3.3 and 2.7 times higher than that of the as-sprayed coating, respectively. On the one hand, both columnar grains and segmented microcracks in the laser-treated zone could effectively improve the strain tolerance of coatings. On the other hand, the oxidation products of TiAl3 under high-temperature condition could seal the microcracks to postpone the crack connection. Thus, the thermal shock resistance of the laser-treated coatings was significantly improved.  相似文献   

6.
Segmentation cracks are crucial for enhancing the strain tolerance and decreasing the propensity of delamination for thermal barrier coatings (TBCs). In this study, segmentation cracks were prepared in air plasma-sprayed TBCs by controlling the residual stress. The evolution of the stress in the coating was characterized via photoluminescence piezospectroscopy using trace α-Al2O3 impurities as stress sensor. Tensile stress (~170 MPa) formed in the as-deposited coating was converted into compressive stress through further thermal exposure. The relationship between the formation of the segmentation cracks and stress in the coating was investigated. It was demonstrated that the segmentation cracks could be formed when a critical coating thickness is achieved. The critical coating thickness and spacing of the segmentation cracks dependent on the tensile stress in the as-deposited coating, and they could be manipulated by controlling the deposition and substrate temperatures. In addition, the evolution of the microstructure and phase composition of the yttria-stabilized zirconia coating was examined.  相似文献   

7.
本文采用电子束物理气相沉积技术在Ni基单晶基体表面制备双层结构的热障涂层后,采用脉冲Nd∶YAG(钇铝石榴石晶体)激光对其进行表面改性处理,分别研究了脉冲宽度和脉冲频率对重熔钇稳定氧化锆涂层(yttria-stabilised-zirconia,YSZ)微观结构及孔隙率的影响。结果发现:激光重熔的YSZ陶瓷层会在快速冷却过程中形成裂纹等缺陷,激光束的脉冲宽度和频率会显著地影响到涂层微观结构,脉冲宽度的增加会使重熔陶瓷层表面紧密、孔隙减少,脉冲频率的增加会使重熔陶瓷层表面的孔隙率先减小后增大。  相似文献   

8.
Plasma-sprayed molybdenum (Mo) coating was deposited on an AISI 1020 steel substrate. Laser remelting was used to eliminate the open pores and microcracks of the plasma-sprayed molybdenum coating. The quantitative investigation of porosity was carried out with the help of Biovis image analysis software. The microhardness was measured using a Vickers indenter. The influence of laser remelting on the wear volume loss of plasma-sprayed Mo was estimated by using a pin-on-disc wear test rig. The worn surface was characterized by scanning electron microscopy. The experimental results demonstrate that the porosity of the coating was decreased and microhardness was improved by laser remelting. The laser remelted plasma-sprayed Mo coating exhibits better wear resistance compared to the untreated plasma-sprayed Mo coating. It is concluded that laser remelting is a potential treatment for the plasma-sprayed coating. In this study, the laser remelted plasma-sprayed Mo coating exhibited of lowest porosity, higher hardness and better wear resistance.  相似文献   

9.
《Ceramics International》2022,48(9):12423-12429
The superposed structure of double ceramic layer (SDCL) could be an effective means to develop long-life thermal barrier coating (TBC) at high temperatures. In this study, YSZ/LaMgAl11O19 TBC system with double-ceramic layer (DCL) and SDCL structures were prepared on nickel-based superalloy substrates by atmospheric plasma spraying. The thermal cycling behavior of the coatings was investigated using a furnace at 1000 °C and burner-rig facility at 1375 ± 25 °C on the coating surface. Results showed that the thermal cycle life of the SDCL structure was increased by 7.2% for the furnace and 13.2% for the burner-rig facility compared with that of the DCL structure. The relatively long thermal cycle life of the SDCL structure was attributed to the blocking of the propagation of cracks in the LMA layers by the YSZ ceramic layer and the release of residual thermal stresses by the formation of cracks in the LMA layers.  相似文献   

10.
《Ceramics International》2023,49(7):10946-10952
Thin double-layer coatings comprising an alumina top coat and mullite bond coat were deposited on SiC substrates by laser chemical vapor deposition (CVD). The effect of the presence of mullite bond coat and the phases of alumina top coat on the structural integrity against the thermal residual stress loaded by the high-temperature CVD process was examined by microstructural characterization and simulative consideration. A laminated layered structure having a dense γ-alumina top surface with a cone-like morphology are grown at a deposition temperature of 1323 K, whereas an α-alumina top layer comprising densely packed faceted grains was grown at 1473 K. The interfaces between the SiC and mullite layers were coherent owing to the formation of a thin transition layer. The γ-alumina layer formed an adhesive interface bordering the mullite layer, whereas small residual defects were formed in the α-alumina layer bordering the mullite layer. Spacings of surface cracking induced by the high-temperature deposition process in the double-layer coatings were approximately half of those in the coatings without mullite layers. As simulative results by finite element method suggested, the double-layer coatings were experimentally verified to be more tolerant to the formation of surface cracks and interfacial delamination, compared to single-layer coatings without the mullite bond layers.  相似文献   

11.
《Ceramics International》2017,43(5):4606-4611
Laser glazing is considered to be a promising surface sealing technique for thermal barrier coating. The dense top layer with reduced surface roughness and the segment cracks perpendicular to the surface are considered to be suitable for improving the thermal cycling and hot corrosion resistance of these kind of coatings. In present study, yttria stabilized zirconia ceramic coatings were manufactured by atmospheric plasma spraying and then subjected to a Nd-YAG pulsed laser source. During the laser glazing process, coatings were preheated to 600 °C and 800 °C in order to obtain different microstructure of the laser glazed coatings. The surface morphologies and cross-sections of the coatings were examined by scanning electron microscopy and microhardness measurements of coatings were carried out. The results indicate that preheating process induces a reduction of the grain size of laser glazed coatings in conjunction with an increasing of microhardness and toughness. In addition, preheating also decreases the substrate-coating interface tensile stress which leads to a reduction of crack surface density.  相似文献   

12.
Nondestructive and accurate measurement of residual stress in ceramic coatings is challenging, but it is crucial to the assessment of coatings failure and life. In this study, for the first time, the thermal‐cycle dependent residual stress in an atmosphere plasma sprayed thermal barrier coating system has been nondestructively and accurately measured using photoluminescence piezo‐spectroscopy. Each thermal cycle consists of a 5‐minute heating held at 1150°C and a 3‐minute water quenching. The measurement was performed within a crack‐susceptible zone in the yttria‐stabilized‐zirconia (YSZ) top coat (TC) closely above the thermally grown oxide layer. A YSZ:Eu3+ sublayer was embedded in TC as a stress sensor. It was found that the initial residual stress was compressive, with a mean value of 240 MPa, which rapidly increased to 395 MPa after 5 thermal cycles (12.5% life) and then increased gradually to the peak of 473 MPa after 25 thermal cycles (62.5% life). After 30 thermal cycles (75% life), the mean stress dropped abruptly to 310 MPa and became highly heterogeneous, with gradual reduction toward final spallation. The heterogeneous stress distribution indicates that many microcracks nucleated at different locations and the spallation occurred due to the coalescence of the microcracks.  相似文献   

13.
采用有限元分析软件ANSYS对等离子喷涂Sm2Zr2O7/YSZ双陶瓷层热障涂层界面残余热应力分布进行了数值仿真。结果表明:基体厚度不同时,涂层界面Sm2Zr2O7/YSZ及界面YSZ/NiCoCrAlY对应应力及应力梯度基本不变,表明应力及应力梯度与基体厚度无关;但基体材质热膨胀系数对涂层系统界面的径向、轴向及剪切应力梯度有决定性的影响,且各应力梯度随金属基体的热膨胀系数差异增加而增大,表明基体材质是影响涂层界面径向残余热应力及应力梯度的根本原因。采用多层陶瓷结构并合理选择各层材质的热膨胀系数将更加有利于降低涂层应力梯度,进而改善涂层性能,延长涂层寿命。  相似文献   

14.
铁基电弧喷涂铝层的高频感应重熔工艺   总被引:4,自引:0,他引:4  
利用高频感应重熔工艺对铁基电弧喷涂铝层进行处理。分析了工作电流、感应时间对涂层组织的影响,并做出了感应重熔过程中平均功率和温度的分布情况。结果表明,铁基电弧喷涂铝层的重熔先从界面开始,然后向表层推进,处理后的喷涂层与基体之间形成了铁铝金属间化合物,达到了冶金结合,当感应电流为300A,感应时间为35s时,所获得的重熔涂层质量最好。  相似文献   

15.
In this study, the effect of laser glazing on the hot corrosion behavior of nanostructured thermal barrier coatings (TBCs) was investigated. To this end, the hot corrosion test of plasma-sprayed and laser-glazed thermal barrier coatings conducted against 45 wt.% Na2SO4 + 55 wt.% V2O5 molten salt at 910 °C for 30 h in open air atmosphere. The results obtained from hot corrosion test showed that the reaction between Y2O3 and the corrosive salt produced YVO4, leached Y2O3 from YSZ and led to the progressive destabilization transformation of YSZ from tetragonal to the monoclinic phase. The lifetimes of the plasma-sprayed TBCs were enhanced approximately twofold by laser glazing. Reducing the reactive specific surface area of the dense glazed layer with the molten salts and improving the stress accommodation through network cracks produced by laser glazing were the main enhancement mechanisms accounting for TBC life extension.  相似文献   

16.
We have investigated the effect of the microstructure on the mechanical properties of three nearly stoichiometric SiC coatings (SiC, SiC + C and SiC + Si coating), which were coated onto spherical particles as simulated nuclear fuel particles by fluidized-bed chemical vapour deposition (FBCVD). The mechanical properties of the SiC coatings were studied using micro- and nano-indentation. The microstructure was characterised using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM was also used to elucidate the deformation behaviour under the indentation. The FBCVD SiC coatings studied exhibited a higher hardness than conventional CVD SiC coatings, and SiC coating gave the highest hardness among the three coatings. TEM confirmed that the presence of pores affect the Young's modulus of SiC coatings. The high hardness was attributed to the high density of dislocations and their interactions. The initiation and propagation of micro cracks under the confined shear stress was found to be responsible for the mechanism of plastic deformation. Based on this hardness-related plastic deformation mechanism, the variation of hardness in the three types of SiC coating was due to different grain morphologies.  相似文献   

17.
During high temperature service, a series of microstructure and phase evolutions occur in thermal barrier coatings (TBCs), which result in degradation of thermal insulation and durability. In this study, the sintering behavior of an air plasma sprayed 8 wt% YSZ coating deposited using electro-sprayed nanostructured particles (ESP) as feedstock powder was investigated and compared with conventional YSZ coating deposited using hollow spherical powders (HOSP). Due to the distinct asymmetric porous structure formed by nanosized YSZ particles, the ESP powder was partially melted in the plasma jet during the deposition, which resulted in the formation of a nanostructured coating that consisted of porous nanozones and dense zones. The ESP coating not only shows a significantly lower initial thermal conductivity of 0.70 W/mK, but also exhibits a stronger sintering resistance in terms of phase stability and thermal insulation compared to the conventional coating. When subjected to prolonged sintering at 1400°C for 128 hours, the thermal conductivity of the ESP coating would gradually increase to about half that of the HOSP coating at 1.29 W/mK. These differences are ascribed to the interaction among different sintering behavior between nanozones and dense zones.  相似文献   

18.
About 6-8 wt% yttria-stabilized zirconia (YSZ) is the industry standard material for thermal barrier coatings (TBC). However, it cannot meet the long-term requirements for advanced engines due to the phase transformation and sintering issues above 1200°C. In this study, we have developed a magnetoplumbite-type SrAl12O19 coating fabricated by atmospheric plasma spray, which shows potential capability to be operated above 1200°C. SrAl12O19 coating exhibits large concentrations of cracks and pores (~26% porosity) after 1000 hours heat treatment at 1300°C, while the total porosity of YSZ coatings progressively decreases from the initial value of ~18% to ~5%. Due to the contribution of porous microstructure, an ultralow thermal conductivity (~1.36 W m−1 K−1) can be maintained for SrAl12O19 coating even after 1000 hours aging at 1300°C, which is far lower than that of the YSZ coating (~1.98 W m−1 K−1). In thermal cyclic fatigue test, the SrAl12O19/YSZ double-ceramic-layer coating undertakes a thermal cycling lifetime of ~512 cycles, which is not only much longer than its single-layer counterpart (~163 cycles), but also superior to that of YSZ coating (~392 cycles). These preliminary results suggest that SrAl12O19 might be a promising alternative TBC material to YSZ for applications above 1200°C.  相似文献   

19.
In this study, thermal mismatch strain-induced structural changes in plasma-sprayed lamellar ceramic coatings upon heating were investigated. Experimental results showed that the main structural change is the propagation of inter- and intra-splat cracks along their tips. Correspondingly, significant changes in properties were observed. A lamellar model with connected inter- and intra-splat cracks was developed. The modeling results suggested that shear stress would be primarily concentrated at the interface between two layers, accounting for the propagation of the inter-splat cracks. Subsequently, the stress was transmitted through the residual bonding areas into the upper layer, and thus a tensile effect was generated inside the splat segment. This can be responsible for the propagation of the intra-splat cracks. In addition, dependence of the crack propagation behavior on the structural parameters is discussed. These microscopic structural changes may provide fundamental understanding on the global structural evolution and failure mechanism of coating/substrate systems during service conditions.  相似文献   

20.
To improve the wear resistance of titanium alloy, in this work, TiC/TiB composite bioinert ceramic coatings were synthesized in-situ via laser cladding using Ti and B4C mixed powders as precursor materials. And to decrease the impact of the excessive residual tensile stress generated by the uneven temperature distribution on the performance of coatings, the coatings were then subsequently heated for 3 h at different temperatures (400 °C, 600 °C, and 800 °C) and then air cooled. The effects of heat treatment on the microstructure, residual stress, micro-hardness, fracture toughness, and wear resistance of the coatings were investigated. The results showed that phase compositions and microstructure of the heat-treated coatings were virtually identical to that of the untreated coatings; however, the precipitation of acicular TiB enhanced mechanical properties of the heat-treated coatings. In addition, the average residual tensile stress values of the coatings decreased as the heat treatment temperature increased, which improved fracture toughness of the coatings from 3.95 to 4.68 MPa m1/2. Moreover, wear resistance of the coatings was greatly enhanced by heat treatment; as the wear volume of the heat-treated coatings decreased by 50% at 800 °C compared with that of the untreated coatings. Lastly, the coatings showed good biocompatibility after being evaluated in vitro, and therefore had broad application prospects in the field of orthopedic implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号