首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(5):6691-6697
The speed of sound is a critical parameter in the test of mechanical and thermal properties. In this work, we proposed a testing method to obtain the elastic modulus of silica aerogel from the sound speed formulas. The solid thermal conductivity of the silica aerogel is experimentally measured for predicting the sound speeds, and then the elastic modulus is calculated based on the elasticity sound speed model. The experimental data of the solid thermal conductivity of silica aerogels with different densities are employed and the obtained elastic modulus is fitted as a power-law exponential function of the density. Two existing sound speed models and three groups of available experimental data are also employed to validate the present fitting relation, and good agreement is obtained for the silica aerogel in the density range of 150–350 kg/m3. The fitting formula can also be extended to estimate the elastic modulus of the glass fiber-reinforced silica aerogel composite. The results show that the elastic modulus of the aerogel composite is sensitive to the glass fiber volume fraction, while the thermal conductivity is weakly dependent on the glass fiber volume fraction at room temperature in the studied range of fiber volume fraction.  相似文献   

2.
The resistance to sulfate attack of mixtures accelerated with alkali-free and alkaline accelerators was found to be mainly influenced by the Al3+ and SO42− added via the admixtures. Microstructural observations showed decalcification and disintegration of the CSH gel, which acted as an additional Ca2+ supplier as compared to the CH for ettringite formation. The CSH decalcification was mainly observed with a homogeneous distribution of the alkali-free admixture. The disintegration of the CSH gel increased the porosity and allowed more sulfate solution to penetrate into the specimens. This process promoted the swelling of the specimens and directly contributed to the expansion, explaining the lack of a direct relationship between the ettringite formation and the expansion. Moreover, the CSH gel disintegration, typical for MgSO4 attack, also occurred with Na2SO4 solutions and depending on the aluminate-sulfate distribution and the extent of the CSH gel disintegration, different damage types were detected. At higher temperatures (65 °C) the damage was mainly controlled by the growth, the rearrangement and the thermal stability of ettringite.  相似文献   

3.
Deficiency of the placental hormone chorionic somatomammotropin (CSH) can lead to the development of intrauterine growth restriction (IUGR). To gain insight into the physiological consequences of CSH RNA interference (RNAi), the trophectoderm of hatched blastocysts (nine days of gestational age; dGA) was infected with a lentivirus expressing either a scrambled control or CSH-specific shRNA, prior to transfer into synchronized recipient sheep. At 90 dGA, umbilical hemodynamics and fetal measurements were assessed by Doppler ultrasonography. At 120 dGA, pregnancies were fitted with vascular catheters to undergo steady-state metabolic studies with the 3H2O transplacental diffusion technique at 130 dGA. Nutrient uptake rates were determined and tissues were subsequently harvested at necropsy. CSH RNAi reduced (p ≤ 0.05) both fetal and uterine weights as well as umbilical blood flow (mL/min). This ultimately resulted in reduced (p ≤ 0.01) umbilical IGF1 concentrations, as well as reduced umbilical nutrient uptakes (p ≤ 0.05) in CSH RNAi pregnancies. CSH RNAi also reduced (p ≤ 0.05) uterine nutrient uptakes as well as uteroplacental glucose utilization. These data suggest that CSH is necessary to facilitate adequate blood flow for the uptake of oxygen, oxidative substrates, and hormones essential to support fetal and uterine growth.  相似文献   

4.
Effective conductivities of porous negative electrodes containing Li-Al or Al as the initial active material were experimentally determined at 450° C for different states of discharge by means of an a.c. impedance bridge. When a negative electrode having a theoretical loading density of 0.83 Ah cm–3 was discharged, the effective conductivity decreased from approximately 20 to 5 ohm–1 cm–1. This decline in the effective conductivity is attributed to the decrease in the volume fraction of conductive materials (Li-Al and Al) in the electrode. A theoretical calculation shows that the total volume fraction of conductive Li-Al and Al governs the resistance behaviour of the negative electrode because of little effect of change in the pore electrolyte conductivity and of low volume fraction of the solid salt precipitated.  相似文献   

5.
In this paper, we report on a study of electronically conductive porous TiN ceramics prepared by aqueous gel‐casting. The effects of solid loading, sintering temperature, and sintering aids on the phase composition, microstructure, and volume fraction of porosity of the prepared porous TiN ceramics are studied. The SEM results show that porosity is uniformly distributed in all of the samples studied. With increasing solid loading and sintering temperature, the volume fraction of porosity decreases slowly. Moreover, the relationship between volume fraction of porosity and mechanical and electrical properties has also been investigated. Our results show that adding Y2O3‐TiO2 as combined sintering aids results in a sharp decrease in the volume fraction of porosity, and the volume fraction range changes from 42%‐60% to 28%‐52%. Moreover, adding sintering aids results in an increase in flexural strength and electrical conductivity with a change in maximum value from 34.6 MPa and 2.3 × 10S?m?1 to 101.6 MPa and 5.1 × 104 S?m?1, respectively.  相似文献   

6.
The response of crops to added P in Vertisols is generally less predictable than in other soil types under similar agroclimatic conditions. Very few studies have considered the residual effects of P while studying responses to fresh P applications. Field experiments were conducted for three years to study the response of sorghum to fertilizer P applied at 0, 10, 20 and 40 kg P ha–1, and its residual value in a Vertisol, very low in extractable P (0.4 mg P kg–1 soil), at the ICRISAT Center, Patancheru (near Hyderbad), India. In order to compare the response to fresh and residual P directly in each season, a split-plot design was adopted. One crop of sorghum (cv CSH6) was grown each year during the rainy season (June-September).The phenology of the sorghum crop and its harvest index were greatly affected by P application. The days to 50% flowering and physiological maturity were significantly reduced by P application as well as by the residues of fertilizer P applied in the previous season. In the first year of the experiment, sorghum grain yield increased from 0.14 t (no P added) to 3.48 t ha–1 with P added at the rate of 40 kg P ha–1. Phosphorus applied in the previous year was 58% as effective as fresh P but P applied two years earlier was only 18% as effective as fresh P.  相似文献   

7.
In this paper, calcium silicate hydrate doped with various amounts of Eu (Eu–CSH) via hydrothermal and coprecipitation methods have been systematically investigated. The hydrothermal method produced xonotlite while coprecipitation gave 11 Å tobermorite. Regardless of the synthesis method, incorporation of Eu inhibited the crystallite growth and particle size of the as-synthesized powders, while increasing their thermal stability. In both phases, Eu3+ was found to occupy the cation sites in preference to Ca2+. Comparing both synthesis methods, the hydrothermally synthesized powders were of higher crystallinity and thermal stability than the powders prepared by coprecipitation. Moreover, Eu–CSH powder by hydrothermal exhibited stronger photoluminescence intensity than the one by coprecipitation, primarily attributed to its higher degree of crystallinity. Thus, they showed higher potential for nanomedicine application where a combination of biocompatibility and light emission is desired.  相似文献   

8.
The objective of this work was to investigate if inorganic calcium silicate hydrate (CSH) hybrids would improve soy protein wet adhesion properties. 3‐aminopropyltriethoxysilane (APTES) was used as a crosslinking agent to make covalent linkage between organic soy protein and inorganic CSH phases. Soy protein–calcium silicate hydrate (MSP‐CSH) composites with different mole ratio of APTES were prepared and the effect of crosslinking reaction on physicochemical properties such as thermal, rheological, FTIR spectroscopic, and morphological and adhesion properties were studied with physical aging effect. Covalent linkage was observed between CSH and soy protein using the FTIR technique. With aging effect, the denaturation temperature (Td) and enthalpies (ΔHd) of each fraction of soy protein increased in DSC thermograms, representing higher thermal stability, and the viscoelasticity of the composites also increased. The roughly coated surface of the MSP‐CSH composite was observed in SEM images. All these changes further confirmed the interaction between CSH and soy protein molecules. Dry and wet adhesion strength of the MSP‐CSH composites was higher than the control MSP alone. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40693.  相似文献   

9.
Howard Wang 《Polymer》2006,47(14):4897-4900
Crystallization of low molecular weight polyethylene from solution has been studied using small angle neutron scattering (SANS). The detection sensitivity of the volume fraction degree of crystallinity is estimated to be 10−5, allowing for the measurement of the very early stages of crystal growth. SANS spectra for both the early and late stages of crystallization can be satisfactorily interpreted with a lamellar crystal model; there is no evidence of diverging or spinodal-decomposition-like density fluctuations during the early stage of crystallization in polyethylene solutions. A possible explanation of the dominant wavevector in small angle X-ray scattering that led to the proposal of ‘spinodal decomposition’ mechanism for early stage crystallization is suggested.  相似文献   

10.
Epichlorohydrin cross-linked chitosan microspheres (CS) and chitosan–heparin polyelectrolyte complex microspheres (CSH) were used in the adsorption of copper (II) ions in aqueous solution. The chitosan microspheres were prepared by the phase inversion method. The use of a cross-linking agent improved the resistance to acidic medium. Polyelectrolyte complex microspheres were prepared by impregnating heparin in cross-linked chitosan microspheres. The microspheres were characterized by IR, TGA and DSC. A study on the effect of the pH on the adsorption of copper (II) ions showed that the optimum pH for both CS and CSH microspheres was 6.0. From a kinetic evaluation, it could be established that the adsorption equilibrium was achieved after 8 h for CS and 25 h for CSH microspheres. The adsorption isotherms were interpreted using Langmuir and Freundlich mathematical models. The results revealed that experimental data of CS was best adjusted by Langmuir model, with maximum capacity of surface saturation equal to 39.31 mg g−1. On the other hand, Langmuir and Freundlich models provided a good fit for adsorption by CSH and the adsorption capacity was 81.04 mg g−1. The interactions between copper (II) ions and both CS and CSH were confirmed by electron paramagnetic resonance spectroscopy, which revealed the formation of a square-planar complex with tetrahedral distortion on the surface of the adsorbents.  相似文献   

11.
In the oxidative condensation of 2,6-dimethylphenol catalysed by copper compounds, poly(2,6-dimethylphenylene oxide) was formed as a particulate solid in both pyridine and pyridine-methanol mixtures. No quinone was produced when the volume fraction of pyridine exceeded 15%. The rate of polymerisation was independent of monomer concentration and first order with respect to catalyst concentration. This first-order dependence ceased when catalyst concentrations exceeded 4 × 10?2 molar. Above this concentration the polymerisation rate is probably controlled by mass transfer of oxygen from the gas to the liquid phase. The rate of polymerisation increased as the volume fraction of methanol increased. A reaction mechanism is proposed to account for the kinetics; this involves a reversible step. Particle sizes of the dispersed polymers have been measured. Heterogeneous systems can be used to produce polymers of higher molecular weights than those obtained in solution systems.  相似文献   

12.
The two-fluid model with kinetic theory of granular flow is implemented into the open source CFD package OpenFOAM®. The effect of total variation diminishing (TVD) convection schemes is investigated by simulating two bubbling fluidized beds. Five TVD schemes are employed to discretize the convection terms of phase velocity and solid volume fraction. Simulated results of the two test cases give reasonable agreement with the experimental data in the literature. For the discretization of the phase velocity convection terms, the five schemes give quite similar time-averaged radial profiles of particle axial velocity. The predicted bubbles in the bed with a central jet are not influenced by the different schemes. For the discretization of the solid volume fraction convection terms, the limitedLinear01, Sweby01 and vanLeer01 schemes give the converged and reasonable solutions, whereas the SuperBee01 and MUSCL01 schemes diverge the solutions. When using the faceLimited gradient scheme the convection scheme becomes more diffusive.  相似文献   

13.
This study presents a novel approach for the synthesis of porous calcium silicate hydrate (CSH) at a low hydrothermal temperature of 110 °C based on enhanced reactivity SiO2 (i.e. silica/polyethylene glycol (PEG2000) composites) as the source silica material. The as-prepared CSH materials exhibited a porous microstructure with a large number of small mesopores. The porosity formation mechanism of CSH was apparent that cavitation, resulting from sonication, enabled PEG2000 (via intercalation on silica) to break apart Si–O–Si structural units, thereby enhancing SiO2 reactivity at a low hydrothermal temperature. In addition, the presence of PEG2000 effectively prevented the aggregation of particles during the formation process of the porous CSH solid. The low temperature synthesis proposed herein represents a viable and effective method for the further development of porous CSH as a functional ceramic material.  相似文献   

14.
A 3-dimensional phase-field model is implemented to simulate the grain evolution in the final stage of liquid-phase sintering. The model considers a liquid phase and a polycrystalline solid phase. Results for varying ratios of the solid–solid interface energy to solid–liquid interface energy and varying solid volume fractions are presented. A variety of microstructures, from fully connected grain structures with liquid pockets at the grain junctions to individual grains fully wetted by the liquid matrix, is seen. The 3 main mechanisms for particle shape accommodation, namely, contact flattening, Ostwald ripening and particle bonding, are reproduced in the simulations. The solid volume fraction, particle size distribution, contiguity, connectivity, particle–particle contact areas and the number of particle contacts per particle are measured as a function of time. The exponent in the power growth law varies between 2.4, for the fully connected grain structures, and 3, for the completely wetted grains.  相似文献   

15.
The present study introduces an attempt for the application of flash desalination technique for small scale needs. An integrated system uses a flashing desalination technique coupled with nano-fluid-based solar collector as a heat source has been made to investigate both the effect of different operating modes and that of the variation of functioning parameters and weather conditions on the fresh water production. The flashing unit is performed by similar construction design technique of commercial multi-stage flashing (MSF) plant. The thermal properties of working fluid in the solar collector have been improved by using different concentrated nano-particles. Cu nano-particle is used in the modeling to determine the proper nano-fluid volume fraction that gives higher fresh water productivity. An economic analysis was conducted, since it affects the final cost of produced water, to determine the cost of fresh water production. Although a system may be technically very efficient, it may not be economical. The effect of different feed water and inlet cooling water temperatures on the system performance was studied. The mathematical model is developed to calculate the productivity of the system under different operating conditions. The proposed system gives a reasonable production of fresh water up to 7.7 l/m2/day under the operation conditions. Based on the cost of energy in Egypt, the estimated cost of the generated potable water was 11.68 US$/m3. The efficiency of the system is measured by the gained output ratio (GOR) with day time. The gained output ratio (GOR) of the system reaches 1.058. The current study showed that the solar water heater collecting area is considered a significant factor for reducing the water production cost. Also, the produced water costs decrease with increasing the collecting area of the solar water heater. The volume fractions of nano-particle in solar collector working fluid have a significant impact on increasing the fresh water production and decreasing cost.  相似文献   

16.
The influence of fiber diameter, length and volume fraction on the properties of steel fiber reinforced concrete in the fresh and hardened states is reported. The compactibility of fresh fibrous concrete decreases linearly with fiber aspect ratio. There is no unique relationship between fiber aspect ratio and ultimate flexural strength or compressive strength. The dynamic modulus of elasticity of fiber reinforced concrete is little different from that of plain concrete. The fibers, however, show substantial improvements in damping when the concrete is wet. It is shown that the ultimate flexural strength can be predicted by a composite mechanics equation. A unique relationship is also shown to exist between ultimate flexural strength and an “effective spacing” concept.  相似文献   

17.
Lead zirconate titanate (PbZr1 ? xTixO3, PZT)/epoxy composites with one‐ dimensional epoxy in PZT matrix (called 3‐1 type piezocomposites) have been fabricated by tert‐butyl alcohol (TBA)‐based directional freeze casting of PZT matrix and afterward infiltration of epoxy. The composites with PZT volume fraction ranging from 0.36 to 0.69 were obtained by adjusting initial solid loading in freeze‐casting slurry. The effect of poling voltage on piezoelectric properties of the composites was studied for various volume fraction of PZT phase. With the increasing of PZT volume fraction, relative permittivity (εr) increased linearly and piezoelectric coefficient (d33 and d31) increased step by step. The resultant composites with 0.57 PZT volume fraction possessed the highest hydrostatic piezoelectric strain coefficient (dh) value (184 pC/N), voltage coefficient (gh) value (13.6 × 10?3 V/m Pa), and hydrostatic figure of merit (HFOM) value (2168 × 10?15 Pa?1).  相似文献   

18.
《Drying Technology》2012,30(15):1763-1770
Separation and purification of phosphatidylcholine (PC) and phosphatidylinositol (PI) fractions to their utmost purity is still a challenging task industrially due to the molecular and structural complexity of lecithin molecules. The present study deals with the filtration of the PI-rich fraction followed by drying of the cake for its further purification and value addition. Filtration of the PI-rich fraction was carried out under constant pressure conditions followed by the drying of the cake in a vacuum tray dryer. The average specific cake resistance (αav) as a function of operating pressure was studied and it showed little variation with respect to the applied pressure differential. The initial solvent content in the cake after filtration was found to be in the vicinity of 1 kg solvent/kg dry solid, which was then subsequently reduced in the drying stage to 0.04 kg solvent/kg dry solid. The drying kinetics of the cake was studied at different drying temperatures in a vacuum tray dryer operated under varying degree of vacuum. The drying rate curve showed a prominent falling rate period with the effective solvent diffusivity in the range of 5.4 × 10?10 m2s?1 to 1.42 × 10?9 m2s?1within the temperature range of 40–60°C. Critical analysis of the dried PI fraction was carried out in terms of phosphatidylinositol content and color. The drying data were analyzed using various models and Das et al.'s model, the modified Henderson and Pabis model, and the Page model were found to provide the best fit sin terms of root mean square error (RMSE), chi square, and correlation coefficient (R 2).  相似文献   

19.
环境扫描电镜用于硅酸盐水泥早期水化的研究   总被引:11,自引:0,他引:11  
采用环境扫描电镜对硅酸盐水泥的早期水化过程进行了连续观察。将硅酸盐水泥早期水化过程分为预诱导期、诱导期、加速期、减速期和稳定期个阶段加以描述。预诱导期阶段水泥开始水解,释放出离子,硅酸三钙(C3S)颗粒表面形成低n(Ca)/n(Si)层,第一批水化产物产生,水泥颗粒表面生成一层水化物的保护膜,使水化反应速度降低。诱导期阶段保护膜逐渐推进直至覆盖整个颗粒表面,膜内外产生渗透压力差。当渗透压力大到足以使薄膜在薄弱处破裂,缺钙的硅酸盐离子就被挤入液相,并和钙离子结合,生成各种不定形的C—C—H。加速期阶段钙离子和硅酸盐离子浓度相对于C—S—H来说达到过饱和,C—S—H高速生长,在颗粒表面附近形成类似于网状形貌的产物(高密度C—S—H),而在颗粒间的原充水空间里形成近球状形貌的产物(低密度C—S—H)。减速期阶段水化产物继续生长,由不定形富水的凝胶状转变为不定形的颗粒状,显微结构继续发展。稳定期阶段水化产物颗粒个数几乎保持不变,但单个颗粒均逐渐生长变大,显微结构逐渐致密化。保护膜的形成和破裂分别可以解释诱导期的产生和结束。C—S—H的生长速度是加速期水化反应速度控制的主要因素。  相似文献   

20.
By means of time‐resolved small‐angle X‐ray scattering, we developed an analysis methodology to assess the void volume fraction ?v in high‐density polyethylene (HDPE) during tensile testing. The specimens were first drawn up to different imposed strains, and subsequently were subjected to stress unloading and strain recovery stages. During the loading stage, ?v progressively increased with the strain level, starting from a well‐defined onset strain prior to the yield point. In particular, ?v reached a maximum of 8.75 vol% for a strain of 12.5% in the case of a HDPE grade with a molecular weight of 105 000 g mol?1. Stress unloading and strain recovery caused a decrease in ?v attained at the end of the loading stage. For a HDPE grade with a molecular weight of 55 000 g mol?1, ?v was more important during the loading stage and the decrease in ?v was less marked during the stress unloading stage when compared to the HDPE with molecular weight of 105 000 g mol?1. The residual and reversible components of void volume fraction were revealed. © 2015 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号