首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
《Ceramics International》2020,46(14):22460-22465
Borates are promising candidates as dielectric substrate materials in low temperature cofired ceramics technology (LTCC) due to their relative low sintering temperatures and relative permittivities compared to their counterparts. However, synthesizing borates having single-phase is still challenging because of the volatility and hydrophilicity of boron resources. In this work, a compositional design was utilized to synthesize single-phase LiBGeO4 ceramics over a broad temperature range from 600 to 840 °C. Radio-frequency dielectric behaviours featured a strong temperature dependence, especially at high temperatures (>400 °C), which is related to the thermally activated polarizations. LiBGeO4 ceramic sintered at 820 °C has optimum microwave dielectric properties with the relative permittivity (εr) of 6.28, a quality factor (Q × f) of 21,620 GHz, and a temperature coefficient of resonance frequency (τf) of -88.7 ppm/°C. LiBGeO4 also showed chemical inertness when cofired with silver (Ag), provided an evidence for its utilization in LTCC technology. Overall, this work provides a strategy for facile synthesis of phase pure borates, via the proposed two-step process to obtain stable boron resources.  相似文献   

2.
In this work, a novel low‐temperature firing microwave dielectric ceramic LiKSm2(MoO4)4 was prepared via solid‐state reaction method. Ceramic samples with relative densities about 94.6% were obtained at sintering temperature 640°C–680°C. The best microwave dielectric properties was obtained in ceramic sample sintered at 620°C with a permittivity about 11.5, a Q × f value about 39 000 GHz and a temperature coefficient of frequency about ?15.9 ppm/°C. According to XRD patterns and backscattered electron micrograph, combined with Energy Dispersive Spectra analysis, of cofired samples with 30 wt% aluminum sintered at 620°C/4 h, the LiKSm2(MoO4)4 ceramic was found to be chemically compatible with Al but react seriously with Ag, forming AgSmMo2O8 phase, at its sintering temperature.  相似文献   

3.
K0.5(Nd1?xBix)0.5MoO4 (0.2 ≤ x ≤ 0.7) ceramics were prepared via the solid‐state reaction method. All ceramics densified below 720°C with a uniform microstructure. As x increased from 0.2 to 0.7, relative permittivity (?r) increased from 13.6 to 26.2 commensurate with an increase in temperature coefficient of resonant frequency (TCF) from – 31 ppm/°C to + 60 ppm/°C and a decrease in Qf value (= quality factor; = resonant frequency) from 23 400 to 8620 GHz. Optimum TCF was obtained for x = 0.3 (?15 ppm/°C) and 0.4 (+4 ppm/°C) sintered at 660 and 620°C with ?r ~15.4, Qf ~19 650 GHz, and ?r ~17.3, Qf ~13 050 GHz, respectively. Ceramics in this novel solid solution are a candidate for ultra low temperature co‐fired ceramic (ULTCC) technology.  相似文献   

4.
Ultra-low firing microwave dielectric ceramic Pb2MoO5 with monoclinic structure was prepared via a conventional solid state reaction method. The sintering temperature ranged from 530 °C to 650 °C. The relative densities of the ceramic samples were about 97% when the sintering temperature was greater than 570 °C. The best microwave dielectric properties were obtained in the ceramic sintered at 610 °C for 2 h with a permittivity ∼19.1, a Q × f value about 21,960 GHz (at 7.461 GHz) and a temperature coefficient value of −60 ppm/°C. From the X-ray diffraction, backscattered electron image results of the co-fired samples with 30 wt% silver and aluminum additive, the Pb2MoO5 ceramics were found not to react with Ag and Al at 610 °C for 4 h. The microwave dielectric properties and ultra-low sintering temperature of Pb2MoO5 ceramic make it a promising candidate for low temperature co-fired ceramic applications.  相似文献   

5.
Novel scheelite-type [Ca0.55(Nd1-xBix)0.3]MoO4 (0.2 ≤ x ≤ 0.95) ceramics were prepared using the solid-state reaction method. According to the X-ray diffraction data, a solid solution was formed in 0.2 ≤ x ≤ 0.95 and all the samples belong to pure scheelite phase with the tetragonal structure. As revealed by Raman spectroscopy, the number of vibrational modes decreased with the increase in x value, which further indicated that Bi3+ ions occupied A-site of scheelite structure. As the x value increased, the sintering temperature decreased from 740°C to 660°C; the permittivity increased from 12.6 to 20.3; the Qf value first decreased slightly and gradually remained stable. Based on the infrared reflectivity spectrum analysis, the calculated permittivity derived from the fitted data shared the same trend with the measured value. The [Ca0.55(Nd0.05Bi0.95)0.3]MoO4 ceramic sintered at 660 °C attained a near-zero value temperature coefficient ~τf (−7.1 ppm/°C) and showed excellent microwave dielectric properties with a ɛr ~ 20.3 and a Qf ~ 33 860 GHz, making this system a promising candidate in the ultralow temperature cofired ceramic (ULTCC) technology.  相似文献   

6.
《Ceramics International》2023,49(5):7861-7870
Glass/ceramic composites applied in the field of low-temperature co-fired ceramics (LTCC) were successfully prepared at 670–710 °C by using waste soda-lime glass (WG) as a binder and natural volcanic ash as a ceramic raw material. Based on the theories of suppression and supplementary network effects, alkaline-earth metal ions (R2+, R = Mg, Ca, Sr, and Ba) and B2O3 were applied to improve the dielectric properties of WG and composites, respectively. The influence of R2+ on the crystal phase evolution, microstructure, mechanical, dielectric, and thermal properties of WG-volcanic ash-based composites were systematically investigated. By doping 2.5 wt% Ba2+ to the environment-friendly LTCC composites, physical properties i.e., εr of 4.86 at 1 MHz, tan δ of 6.32 × 10?3, coefficient of thermal expansion of 8.72 × 10?6/°C, and thermal conductivity of 1.04 W/(m·K) are obtained. It is worth mentioning that the environment-friendly LTCC composite uses WG with a low glass transition temperature to reduce the sintering temperature and a tiny amount of a modifier to adjust the dielectric performance instead of synthesizing specific crystals by adding lots of chemical reagents. These, in turn, do not only have the potential to be used in the LTCC packaging technology but also have significance for sustainable development. Additionally, because of good chemical compatibility between aluminum and the composites, the environment-friendly LTCC composites with ultra-low sintering temperature have the potential ability to lower the cost of LTCC packaging materials.  相似文献   

7.
Ag2MoO4 ceramic was prepared by using the solid‐state reaction method, which could be sintered at 450°C for 2 h, having a relative permittivity of 8.08, a Qf value of 17 000 GHz, and a temperature coefficient of resonance frequency about ?133 ppm/°C. Ag2MoO4 ceramic was chemically compatible with silver but reacted seriously with aluminum to form (Ag0.5Al0.5)MoO4 during the sintering. The fitting of infrared spectra and the Shannon's additive rule were employed to study intrinsic dielectric behaviors of the ceramics at microwave region. Ionic displacive polarization and the electronic polarization contributed almost equally to the dielectric permittivity of the ceramic at microwave region. The Ag2MoO4 ceramics could be a good candidate for ultra‐low temperature co‐fired microwave devices.  相似文献   

8.
The liquid‐phase sintering behavior and microstructural evolution of x wt% LiF aided Li2Mg3SnO6 ceramics (x = 1‐7) were investigated for the purpose to prepare dense phase‐pure ceramic samples. The grain and pore morphology, density variation, and phase structures were especially correlated with the subsequent microwave dielectric properties. The experimental results demonstrate a typical liquid‐phase sintering in LiF–Li2Mg3SnO6 ceramics, in which LiF proves to be an effective sintering aid for the Li2Mg3SnO6 ceramic and obviously reduces its optimum sintering temperature from ~1200°C to ~850°C. The actual sample density and microstructure (grain and pores) strongly depended on both the amount of LiF additive and the sintering temperature. Higher sintering temperature tended to cause the formation of closed pores in Li2Mg3SnO6x wt% LiF ceramics owing to the increase in the migration ability of grain boundary. An obvious transition of fracture modes from transgranular to intergranular ones was observed approximately at x = 4. A single‐phase dense Li2Mg3SnO6 ceramic could be obtained in the temperature range of 875°C‐1100°C, beyond which the secondary phase Li4MgSn2O7 (<850°C) and Mg2SnO4 (>1100°C) appeared. Excellent microwave dielectric properties of Q × f = 230 000‐330 000 GHz, εr = ~10.5 and τf = ~?40 ppm/°C were obtained for Li2Mg3SnO6 ceramics with x = 2‐5 as sintered at ~1150°C. For LTCC applications, a desirable Q × f value of ~133 000 GHz could be achieved in samples with x = 3‐4 as sintered at 875°C.  相似文献   

9.
(NaY)1/2MoO4 was fabricated via the solid-state reaction method of Na2CO3, Y2O3, and MoO3. Scanning electron microscopy results demonstrated that all the (NaY)1/2MoO4 ceramics could be densified well in the sintering temperature range of 900–960°C. Results of X-ray diffraction analysis demonstrated that the (NaY)1/2MoO4 ceramics crystallized into tetragonal scheelite structure. Sintering (NaY)1/2MoO4 at 940°C for 2 h optimized the microwave dielectric properties of the ceramics. The microwave permittivity, Q × f, and TCF of the (NaY)1/2MoO4 were 10.9, 29 000 GHz and −40.7 ppm/°C, respectively.  相似文献   

10.
《Ceramics International》2021,47(22):31375-31382
Novel Ce2(MoO4)2(Mo2O7) (CMO) ceramics were prepared by a conventional solid-state method, and the microwave dielectric properties were investigated. X-ray diffraction results illustrated that pure Ce2(MoO4)2(Mo2O7) structure formed upon sintering at 600 °C-725 °C. [CeO7], [CeO8], [MoO4], and [MoO6] polyhedra were connected to form a three-dimensional structure of CMO ceramics. Analysis based on chemical bond theory indicated that the Mo–O bond critically affected the ceramics’ performance. Furthermore, infrared-reflectivity spectra analysis revealed that the primary polarisation contribution was from ionic polarisation. Notably, the optimum microwave dielectric properties of εr = 10.69, Q·f = 49,440 GHz (@ 9.29 GHz), and τf = −30.4 ppm/°C were obtained in CMO ceramics sintered at 700 °C.  相似文献   

11.
Negative thermal expansion (NTE) performance of Fe2(MoO4)3 is only found in a high-temperature range due to its monoclinic-to-orthorhombic (M-O) phase transformation temperature (PTT) at 503.5°C. To stabilize the orthorhombic phase of Fe2(MoO4)3 at room temperature, a series of Fe2-xScx(MoO4)3 (0≤x≤1.5) (abbreviated as F2-xSxM) were fabricated via solid-state reaction. Results indicate that the M-O PTT of Fe2(MoO4)3 is successfully reduced from 503.5°C to 34.5°C by A-site cation substitution of Sc3+. The regulation mechanism is considered to be the decrease in electronegativity of (Fe2-xScx)6+ in F2-xSxM. Both variable temperature X-ray diffraction (XRD) and thermal mechanical analysis (TMA) analysis results indicate that F0.5S1.5 M exhibits anisotropic NTE in 100–700°C. The results indicate that it can effectively improve the densification of Sc-substituted F0.5S1.5 M ceramics by two-step calcination process. Furthermore, higher second-step calcination temperature is beneficial for the formation of single-phased orthorhombic F0.5S1.5 M. The NTE response temperature range of F0.5S1.5 M ceramics second-step sintered at 1000°C is broadened to 30–600°C, and the corresponding coefficient of thermal expansion is -5.74 × 10−6°C−1. The ease in the proposed design and preparation method makes NTE F0.5S1.5 M potential for a wide range of applications in precision mechanical, electronic, optical, and communication instruments.  相似文献   

12.
《Ceramics International》2021,47(20):28675-28684
In next-generation mobile and wireless communication systems, low sintering temperature and excellent dielectric properties are synergistic objectives in the application of dielectric resonators/filters. In this work, Li2Ti0·98Mg0·02O2·96F0.04–1 wt% Nb2O5 (LTMN) ceramics were fabricated, and their sintering temperature was successfully lowered from 1120 °C to 750 °C by adjusting the mass ratio of B2O3–CuO (BC) additive. The optimum dielectric properties (ԑr ~ 24.44, Q × f ~ 60,574 GHz and τf ~ 22.8 ppm/°C) were obtained in BC-modified LTMN ceramics sintered at 790 °C. Even if their sintering temperature was lowered to 750 °C, the lowest temperature among the Li2TiO3-based dielectric ceramics currently used for LTCC technology, excellent dielectric properties (ԑr ~ 23.77, Q × f ~ 51,636 GHz) were still maintained. Additionally, no extra impurity phase was detected in BC-modified LTMN ceramics co-fired with Ag at 790 °C, indicating that BC-modified LTMN ceramics have a bright prospect in high-performance LTCC devices for 5G applications.  相似文献   

13.
《Ceramics International》2020,46(7):9129-9135
This work presents the effects of sintering temperature ranging from 1200 °C to 1300 °C at intervals of 20 °C on the crystal structure, ferroelectric properties, and electrocaloric effect (ECE) of Pb0.8Ba0.2ZrO3. Samples sintered at 1240 °C, 1260 °C, and 1280 °C have large remanent polarization and small coercive field. Meanwhile, samples sintered at 1260 °C, 1280 °C, and 1300 °C possess large breakdown field strength. Samples sintered at 1260 °C for 4 h exhibit the optimal ferroelectric properties. Antiferroelectricity-ferroelectricity (AFE-FE) phase transition occurs at room temperature T1 (279 K). Directly examining ECE at this temperature is meaningful, and the temperature change is 0.068 K at approximately 60 °C and 30 kV/cm. Results laid the foundation for studying the performance of ferroelectric and ECE within this phase-transition temperature range and provide a reference for new solid-state refrigeration technology.  相似文献   

14.
In this study, the novel temperature-stable (1-x)Ag2MoO4-xAg0.5Bi0.5MoO4 microwave dielectric ceramics were prepared by a modified solid-state reaction method. The phase composition, microstructures and microwave dielectric properties of the (1-x)Ag2MoO4-xAg0.5Bi0.5MoO4 ceramics were investigated. All the compounds can be sintered well at ultra-low temperatures (<540 °C). The XRD and SEM analysis indicate that the Ag2MoO4 and the Ag0.5Bi0.5MoO4 can coexist with each other. When x = 0.65, the ceramics exhibit the best microwave dielectric properties with a relative permittivity of 23.9, a Q × f value of 16,200 GHz (at 7.3 GHz) and a near-zero TCF value of -2.4 ppm/°C at 520 °C. The results indicate that temperature-stable (1-x)Ag2MoO4-xAg0.5Bi0.5MoO4 ceramics are promising candidates for low temperature co-fired ceramics (LTCC) applications.  相似文献   

15.
Low‐temperature sintering of β‐spodumene ceramics with low coefficient of thermal expansion (CTE) was attained using Li2O–GeO2 sintering additive. Single‐phase β‐spodumene ceramics could be synthesized by heat treatment at 1000°C using highly pure and fine amorphous silica, α‐alumina, and lithium carbonate powders mixture via the solid‐state reaction route. The mixture was calcined at 950°C, finely pulverized, compacted, and finally sintered with or without the sintering additive at 800°C–1400°C for 2 h. The relative density reached 98% for the sample sintered with 3 mass% Li2O–GeO2 additive at 1000°C. Its Young's modulus was 167 GPa and flexural strength was 115 MPa. Its CTE (from R.T. to 800°C) was 0.7 × 10?6 K?1 and dielectric constant was 6.8 with loss tangent of 0.9% at 5 MHz. These properties were excellent or comparative compared with those previously reported for the samples sintered at around 1300°C–1400°C via melt‐quenching routes. As a result, β‐spodumene ceramics with single phase and sufficient properties were obtained at about 300°C lower sintering temperature by adding Li2O–GeO2 sintering additive via the conventional solid‐state reaction route. These results suggest that β‐spodumene ceramics sintered with Li2O–GeO2 sintering additive has a potential use as LTCC for multichip modules.  相似文献   

16.
A novel low‐temperature sintering microwave dielectric based on forsterite (Mg2SiO4) ceramics was synthesized through the solid‐state reaction method. The effects of LiF additions on the sinterability, phase composition, microstructure, and microwave dielectric properties of Mg2SiO4 were investigated. It demonstrated that LiF could significantly broaden the processing window (~300°C) for Mg2SiO4, and more importantly the sintering temperature could be lowered below 900°C, maintaining excellent microwave dielectric properties simultaneously. The 2 wt% LiF‐doped samples could be well‐sintered at 800°C and possessed a εr ~ 6.81, a high Q×f ~ 167 000 GHz, and a τf ~ ?47.9 ppm/°C, having a very good potential for LTCC integration applications.  相似文献   

17.
Novel K2–2xAg2xMg2(MoO4)3 (x = 0–0.09) ceramics were synthesized by conventional solid-state sintering method. Based on the X-ray diffraction (XRD) patterns, all samples were identified to belong to an orthorhombic structure with a space group of P212121(19). The pure phase K2Mg2(MoO4)3 specimen when sintered at 590 °C revealed the favorable microwave dielectric properties: εr of 6.91, Q×f of 21,900 GHz and τf of ?164 ppm/°C. The substitution of Ag+ for K+ in K2–2xAg2xMg2(MoO4)3 (x = 0.01–0.09) ceramics led to the more stable structure and dramatically enhanced the Q×f to a value of 54,900 GHz at 500 °C. The microwave dielectric properties were related to the relative density, microstructure, ionic polarization, lattice energy, packing fraction, and bond valence of the ceramics. It was suggested that for ultra-low temperature co-fired ceramic (ULTCC) applications, K1.86Ag0.14Mg2(MoO4)3 ceramic could be sintered at 500 °C, which revealed an excellent combination of microwave dielectric properties (εr =7.34, Q×f =54,900 GHz and τf =–156 ppm/°C) and good chemical compatibility with aluminum electrodes.  相似文献   

18.
Using a Ni0·75Zn0·25Fe2O4 nanopowder synthesized by means of a hydrothermal method as a raw material, polycrystalline nickel zinc (NiZn) ferrite ceramics composed of sub-micron grains were successfully prepared via an electric current-assisted sintering method. Temperatures ranging from 800 °C to 950 °C and a dwell time of 20 min were employed. The phase composition and microstructure of the samples were characterized via X-ray diffraction and scanning electron microscopy, respectively. Moreover, the magnetic properties of the samples were investigated using a vibrating sample magnetometer and a ferromagnetic resonance system. The results revealed that each sintered sample was mainly composed of a spinel phase. With increasing sintering temperature, the specific saturation magnetization increased from 71.85 emu/g to 74.58 emu/g, owing mainly to the increase in the relative density and the average grain size of the NiZn ferrites. The coercivity and ferromagnetic resonance linewidth of the ferrite ceramics decreased monotonically with increasing sintering temperature, owing mainly to the magnetostriction coefficient, saturation magnetization, and porosity of the sintered ferrites.  相似文献   

19.
《Ceramics International》2022,48(1):784-794
A new type of microwave dielectric ceramics with low dielectric loss was fabricated through a traditional solid-phase method. X-ray diffraction and density tests showed that KSrPO4 ceramics with a single orthorhombic phase could be synthesized and densified at 950 °C, and the crystal structure of KSrPO4 was further confirmed by Rietveld refinement analysis. The densification temperature of KSrPO4 was lower than 961 °C, indicating the ceramics could be used in LTCC devices. Additionally, based on the complex chemical bond theory, some internal parameters of KSrPO4 ceramics were calculated and the effects of these parameters on the properties of KSrPO4 were systematically analyzed for the first time. Furthermore, the composite dielectric constant and loss of KSrPO4 ceramics were analyzed by infrared reflectance spectroscopy, and the theoretical loss and the actual loss were compared. Finally, a vector network analyzer was employed to measure the microwave dielectric properties of all samples. The results showed that KSrPO4 sintered at 950 °C obtain the best microwave dielectric properties, including εr = 7.85, Q·f = 34,527 GHz (at 10.43 GHz) and τf = ?14.82 ppm/°C.  相似文献   

20.
《Ceramics International》2022,48(14):20315-20323
NiCuZn ferrite is a material suitable for low-temperature co-fired ceramic (LTCC) technology due to its high permeability and relatively low sintering temperature. The main research questions regarding NiCuZn ferrites are focused on reducing the sintering temperature of the NiCuZn ferrites to achieve compatibility with the Ag electrodes and improve their electromagnetic properties. In this study, the electromagnetic properties of NiCuZn (Ni0.29Cu0.14Zn0.60Fe1.94O3.94) ferrites were enhanced by doping with Bi2O3, resulting in a reduction of the sintering temperature to 925 °C. The findings show that a suitable concentration of Bi2O3 doping could promote the growth of grains and result in NiCuZn ferrites with denser microstructures sintered at a low temperature. Furthermore, adding 0.30 wt% Bi2O3 to NiCuZn ferrite enhances its electromagnetic properties, such as a high real part of permeability (~937.6 @ 1 MHz), high saturation magnetization (~60.353 emu/g), low coercivity (~0.265 kA/m), and excellent dielectric constant (~14.71 @ 1 MHz). In addition, the chemically compatible Ag electrodes suggest that the NiCuZn +0.30 wt% Bi2O3 ceramics may be acceptable for LTCC technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号