首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The reactivity of bulk PdO clusters produced by plasma oxidation of Pd(100) towards propene oxidation was characterized using temperature programmed desorption (TPD) and isothermal oxygen titration. The TPD results were dominated by simultaneous CO2 and water desorption in a peak at 490 K. The only other product observed was a small amount of CO near saturation propene coverages that also desorbed at 490 K. The propene coverage saturated at exposures between 0.5–1 l, indicating a sticking coefficient close to one. In the titration experiments, CO2 production peaked almost immediately upon exposure to propene, indicating that the propene oxidation rate fell as the surface was reduced. Above 450 K, virtually all of the propene was completely oxidized to CO2 and water, while at lower temperatures small amounts of CO were observed and unreacted propene fragments accumulated on the surface. In comparison, previous results for a well-ordered surface oxide on Pd(100) were similar in that CO2 and water also desorbed simultaneously indicating a similar mechanism, but different in that the sticking coefficient on the surface oxide was a factor of 20 lower, and the desorption peaked 60 K lower. These differences cause the bulk oxide to be far more active at higher temperatures than the surface oxide, but the surface oxide displays some activity down to lower temperatures where propene simply accumulates on the bulk oxide surface.  相似文献   

2.
Kämper  A.  Hahndorf  I.  Baerns  M. 《Topics in Catalysis》2000,11(1-4):77-84
Adsorption geometries and energies of ethane and propane physisorbed on the (001) surface of vanadium pentoxide with oxygen vacancies were determined by a molecular mechanics simulation. Three types of oxygen vacancies, built up by removal of vanadyl oxygen, two-fold and three-fold coordinated oxygen, respectively, have been modeled as defects. The energetically most favorable adsorption site is on top of a vacancy of two-fold coordinated oxygen for ethane and propane, respectively. The next favorable site for both alkanes is on top of a vacancy of vanadyl oxygen. Due to the generation of a “van der Waals cage” which traps the hydrocarbon the adsorption on the defect site is favored in comparison with the ideal surface for these two defect types. A vacancy of three-fold coordinated oxygen does not lead to an enhancement of adsorption and pushes the reactant towards the unperturbed surface areas due to the fact, that no energy minimum can be obtained in the vicinity of the defect. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Nanostructured vanadium nitride and carbide catalysts were prepared by the nitridation and carburization of vanadium oxide supported on M41S materials (MCM-41 and SBA-15) and activated carbon. The oxide precursors, V2O5/M41S, were obtained in three different synthesis strategies using “in situ” and “ex situ” incorporation of vanadia precursors (V(acac)3) into the mesoporous host. For the oxide precursors specific surface areas exceeding 1,200 m2 g−1 were achieved. After nitridation a slight decrease of surface area was observed. All VN catalysts show a high activity in propane dehydrogenation with a selectivity exceeding 80% towards propene. Impregnation and nitridation conditions have profound influence upon the catalytic activity. The highest activity was observed for VN supported on NORIT A.  相似文献   

4.
《Catalysis Today》2005,99(1-2):59-67
Mechanistic and kinetic aspects of the catalytic oxidative dehydrogenation of propane (ODP) were studied within a wide range of temperatures (673–773 K), partial pressures of oxygen (0–20 kPa), propane (0–40 kPa) and propene (0–4 kPa) under both steady-state ambient-pressure and transient, vacuum conditions in the temporal analysis of products (TAP) reactor. A Mn0.18V0.3Cr0.23W0.26Ox–Al2O3 catalyst was identified as a selective catalyst for ODP by high-throughput experiments. For comprehensive catalyst characterization, XRD, BET, and in situ UV–visible techniques were applied. The results from transient experiments in combination with UV–visible tests reveal that selective and non-selective propane oxidation occurs on the same active surface sites, i.e., lattice oxygen. COx formation takes place almost exclusively via consecutive propene oxidation, which involves both lattice and adsorbed oxygen species, with the latter being active in CO formation. However, the adsorbed species play a minor role. CO2 formation was found to increase in the presence of propene in the reaction feed. Optimized operating conditions for selective propane oxidation were derived and discussed based on the experimental observations with respect to the influence of temperature and partial pressures of O2, C3H6 and C3H8 on the reaction. In co-feed mode with a propane to oxygen ratio of 2, optimal catalytic performance is achieved at low partial pressures of oxygen and high temperature. Propene selectivity can be also improved by carrying out the ODP reaction in a periodic mode; that is an alternate feed of propane and air.  相似文献   

5.
The oxidation state of platinum supported on mesoporous SiO2 and Al2O3 with MCM-41 type structure during the reduction of NOx with propene or propane was investigated using in situ X-ray absorption spectroscopy. Platinum supported on MCM-41 (SiO2) was reduced at low and oxidized at high reaction temperatures when propene was used as reducing agent, while it was found to be always oxidized in Pt/MCM-41 (Al2O3). When propane was used as reducing agent significant NO conversion was not observed over Pt/MCM-41 (SiO2) and on both supports platinum was in an oxidized state. At the successive adsorption of the reactants, the prereduced catalysts were oxidized after NO adsorption and reduced after addition of the hydrocarbons. Addition of oxygen re-oxidized the catalysts, while the presence of water vapor did not influence the oxidation state.  相似文献   

6.
Temperature-programmed techniques were employed to investigate the interaction of CO with CuO–CeO2 prepared by the urea-nitrates combustion method. These catalysts exhibited high and stable CO oxidation activity at relatively low reaction temperatures (< 150 °C). The CO adsorption capacity and catalytic activity of the catalysts was analogous to the concentration of easily-reduced copper oxide surface species. TPD and TPSR results can be explained by a dual scheme of CO adsorption: (i) on oxidized sites, which get reduced with simultaneous formation of surface CO2 and (ii) on reduced sites created by the former interaction. 10–20% of adsorbed CO desorbs molecularly in the absence of gas-phase O2, but reacts totally towards CO2 in the presence of gas-phase O2. Inhibition by CO2 observed under steady-state CO oxidation conditions is due to CO2 adsorption as found by CO2-TPD.  相似文献   

7.
8.
The surface composition of Rh and Pt blacks (as determined by XPS) shows carbon and oxygen impurities in the untreated state. Oxygen on Pt is present as adsorbed O as well as OH/H2O groups and oxidized carbon. Rh was partly oxidized to Rh2O3, in agreement with UPS showing hardly any Fermi‐edge intensity in untreated Rh as opposed to untreated Pt. High Fermi‐edge intensities indicated a predominant metallic surface after an in situ treatment with H2 at 483 K, increasing the purity (XPS) to ∼90%. This treatment reduced Rh to metal and removed its C impurity. Pt, in turn, retained much carbon after H2 treatment, present mainly as graphitic carbon. A minor amount of CO was also detected, some of the O 1s peak belonging to it. The two metals were tested in methylcyclopentane reactions. Considering the necessity of carbon for nondegradative reactions and oxygen enhancing fragmentation, a correlation is suggested between the typical impurities of Pt and Rh and their respective catalytic propensities: the high fragmentation activity of Rh and the predominant nondegradative reactions to C6 “ring opening products” on Pt. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Well ordered V2O3(0001) layers may be grown on Au(111) surfaces. These films are terminated by a layer of vanadyl groups which may be removed by irradiation with electrons, leading to a surface terminated by vanadium atoms. We present a study of methanol adsorption on vanadyl terminated and vanadium terminated surfaces as well as on weakly reduced surfaces with a limited density of vanadyl oxygen vacancies produced by electron irradiation. Different experimental methods and density functional theory are employed. For vanadyl terminated V2O3(0001) only molecular methanol adsorption was found to occur whereas methanol reacts to form formaldehyde, methane, and water on vanadium terminated and on weakly reduced V2O3(0001). In both cases a methoxy intermediate was detected on the surface. For weakly reduced surfaces it could be shown that the density of methoxy groups formed after methanol adsorption at low temperature is twice as high as the density of electron induced vanadyl oxygen vacancies on the surface which we attribute to the formation of additional vacancies via the reaction of hydroxy groups to form water which desorbs below room temperature. Density functional theory confirms this picture and identifies a methanol mediated hydrogen transfer path as being responsible for the formation of surface hydroxy groups and water. At higher temperature the methoxy groups react to form methane, formaldehyde, and some more water. The methane formation reaction consumes hydrogen atoms split off from methoxy groups in the course of the formaldehyde production process as well as hydrogen atoms still being on the surface after being produced at low temperature in the course of the methanol ?? methoxy + H reaction.  相似文献   

10.
Different magnesium vanadate phases, V-Mg-O phases (α- Mg2V2O7, Mg3V2O8 and β- MgV2O6), MgO and V2O5 oxides have been compared with respect to their surface properties and their oxygen exchange capacities with C18O2 in the gas phase. By temperature- programmed desorption of carbon dioxide, the absence of any basic impurities (i.e., MgO or residual oxidised K impurities resulting from the preparation) has been evidenced on the surface of magnesium vanadate phases. This demonstrates that the catalytic properties of the magnesium vanadate phases for oxidative dehydrogenation of propane as previously studied cannot be explained by synergetic effects due to the presence of any basic component impurities since they are absent in this case. While on MgO an important surface exchange process occurs with C18O2 of the gas phase, this exchange is very low on V2O5 and pure V-Mg-O phases. A comparison of the different magnesium vanadate phases in the same experimental conditions indicates that the α-Mg2V2O7 phase (which exhibited the highest selectivity for oxidative dehydrogenation of propane to propene) shows the lowest lattice oxygen exchange with C18O2 of the gas phase. This is another specificity of this phase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Density functional theory calculations (GGA-PBE) have been performed to investigate the adsorption of C3 (propane, isopropyl, propene, and allyl) and H species on the proposed active center present in the surface ab planes of the bulk Mo?CV?CTe?CNb?CO M1 phase in order to better understand the roles of the different surface cations in propane ammoxidation. Modified cluster models were employed to isolate the closely spaced V=O and Te=O from each other and to vary the oxidation state of the V cation. While propane and propene adsorb with nearly zero adsorption energy, the isopropyl and allyl radicals bind strongly to V=O and Te=O with adsorption energies, ??E, being ???1.75 eV, but appreciably more weakly on other sites, such as Mo=O, bridging oxygen (Mo?CO?CV and Mo?CO?CMo), and empty metal apical sites (??E > ?1 eV). Atomic H binds more strongly to Te=O (??E ?? ?3 eV) than to all the other sites, including V=O (??E = ?2.59 eV). The reduction of surface oxo groups by dissociated H and their removal as water are thermodynamically favorable except when both H atoms are bonded to the same Te=O. Consistent with the strong binding of H, Te=O is markedly more active at abstracting the methylene H from propane (E a  ?? 1.01 eV) than V=O (E a  = 1.70 eV on V5+=O and 2.13 eV on V4+=O). The higher-than-observed activity and the loose binding of Te=O moieties to the mixed metal oxide lattice of M1 raise the question of whether active Te=O groups are in fact present in the surface ab planes of the M1 phase under propane ammoxidation conditions.  相似文献   

12.
The effect of calcium and potassium on the physiochemical properties and performance of V2O5/ZrO2 catalyst for oxidative dehydrogenation of propane was studied in the temperature range of 385–400 °C. The vanadia loading was kept constant at 5 VOx/nm2 and the atomic ratio A/V (A=Ca, K) was varied from 0.05 to 0.75. The vanadia surface structure was investigated using X-ray diffraction analysis (XRD), electron paramagnetic resonance (EPR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The redox property of the catalysts was studied by temperature programmed reduction (TPR) and temperature programmed oxidation (TPO) whereas surface acidity was measured by temperature programmed desorption (TPD) of ammonia. Calcium and potassium both interact with the surface V=O and stabilize the +5 oxidation state of vanadium. Interaction between calcium and vanadium was more intense though surface concentration of calcium was lower than that of potassium. For doped catalysts, the activity was lower due to an increase in reduction temperature as well as a lower extent of reduction and increased resistance to undergo redox cycles. On the other hand, removal of surface acidic sites by the dopants increased the propene selectivity. Potassium was more effective in decreasing the activity and increasing the propene selectivity.  相似文献   

13.
《Catalysis Today》2005,99(1-2):151-159
Silica supported vanadia and molybdena catalysts with, and without Au, were prepared, characterized with XRD, TEM, XPS, H2-TPR and probe reaction of isopropanol decomposition, and tested in the oxidation of propene, propane and CO. The presence of Au: (a) does not affect markedly structural and textural properties, such as specific surface area, size of V2O5 or MoO3 crystallites, or the electronic state of V and Mo ions, (b) increases the reducibility of vanadia and molybdena phase, (c) enhances the dehydrogenation properties in isopropanol decomposition, and (d) modifies catalytic activity in oxidation reactions. The Au particles increase the total activity in CO oxidation. For propane oxidation at high temperatures the increase in total activity is observed, with the decrease in the selectivity to oxidative dehydrogenation product (propene) and increase in the selectivity to CO2. The catalytic performance in propene oxidation at 200–300 °C depends on the Au presence and the composition of the reaction mixture. The gold-containing catalysts favour allylic oxidation of propene to acrolein and oxyhydration to acetone, and suppress the C2 products (ethanal, acetic acid) of partial degradation of a propene molecule. In the presence of hydrogen in the reaction mixture, higher selectivities of acetone (product of oxyhydration) were observed for all the catalysts.  相似文献   

14.
A surface intermediate with a C/N ratio close to 3 has been shown by TPD to form at co-adsorption of NO and propane as well as NO, propane and O2 on low-exchanged Cu-ZSM-5. The adsorption of NO, propane and oxygen has been studied to evaluate their effect on the formation of this complex. Its formation is accompanied by a decrease in the concentration of surface nitrite–nitrate. The kinetics of nitrite–nitrate adspecies formation as a function of the reagents concentration and temperature has been investigated. Some NO adspecies have been found to decompose yielding N2O. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Ruitenbeek  M.  van Dillen  A.J.  de Groot  F.M.F.  Wachs  I.E.  Geus  J.W.  Koningsberger  D.C. 《Topics in Catalysis》2000,10(3-4):241-254
The mechanism of catalytic oxidation reactions was studied using in situ X-ray absorption spectroscopy (XAFS) over a 17.5 wt% V2O5/Al2O3 catalyst, i.e., at reaction temperatures and in the presence of reactants. It was found that X-ray absorption near-edge structure (XANES) is a powerful tool to study changes in the local environment and the oxidation state of the vanadium centres during catalytic oxidation. At 623 K, the catalyst follows the associative mechanism in CO oxidation. XAFS revealed that the Mars–van Krevelen mechanism is operative at 723 K for CO oxidation. The extended X-ray absorption fine structure (EXAFS) results showed that the structure of the supported V2O5 phase consists of monomeric tetrahedral (Al–O)3–V=O units after dehydration in air at 623 K. However, the residuals of the EXAFS analysis indicate that an extra contribution has to be accounted for. This contribution probably consists of polymeric vanadate species. The structure remains unchanged during steady-state CO oxidation at 623 and 723 K. Furthermore, when oxygen was removed from the feed at 623 K, no changes in the spectra occurred. However, when oxygen is removed from the feed at 723 K, reduction of the vanadium species was observed, i.e., the vanadyl oxygen atom is removed. The V3+ ion subsequently migrates into the γ-Al2O3 lattice, where it is positioned at an Al3+ octahedral position. This migration process appears to be reversible; so the (Al–O)3–V=O units are thus restored by re-oxidation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Ordered mesoporous CMK-3 carbon replicas were synthesized by infiltration of mesopores present in a SBA-15 silica template with two different carbon precursors, i.e. sucrose and poly(furfuryl alcohol). The obtained composites were carbonized under an inert gas atmosphere at 550, 650, 750 and 850?°C, and the template was etched with a HF solution. The final carbon replicas were analyzed by various physicochemical techniques, including low-temperature N2 adsorption, X-ray diffraction, X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, and tested as catalysts in the oxidative dehydrogenation of propane (ODP) at 450?°C. Both series of materials differed strongly with respect to their porosity, but showed very similar surface composition determined by XPS. Higher porosity of CMK-3 prepared using the sucrose precursor influenced propane conversion and selectivity to propene. Furthermore, oxygen containing groups (e.g. carbonyl-type) were found to be less sensitive to the type of carbon precursor than to the ODP reaction conditions.  相似文献   

17.
The adsorption of propene on rutile TiO2(110) and on gold islands dispersed on TiO2(110) [Au/TiO2(110)], both at 120 K, has been studied using temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and He+ low energy ion scattering spectroscopy (LEIS). Propene adsorbs on both TiO2(110) and Au/TiO2(110), with desorption peak temperatures at low coverage of 190 and 240 K, respectively. When only 16% of the TiO2(110) surface is covered by gold islands [16% Au/TiO2(110)], moderate propene doses populate both the 240 and 190 K TPD peaks, in that order. The 190 K peak, seen also without Au, is due to propene bound to bare Ti sites. The 240 K peak is attributed to propene adsorbed to Ti sites at the edges of gold islands. Tiny doses of propene to the 16% Au/TiO2(110) surface give this a 240 K TPD peak but no 190 K feature, showing that the propene is mobile on TiO2(110). A TPD feature at 150 K, which is more prominent at higher Au coverages and higher propene doses, is due to propene bound only to metallic Au islands. Propene desorption shows additional intensity at 265-310 K when the gold islands are only one atom thick, due to propene adsorbed on 2D Au islands or at Ti sites near their edges.  相似文献   

18.
The electrooxidation of DME was studied at a bulk platinum electrode. It was shown that the DME adsorption was a slow step in the overall oxidation reaction. The DME adsorption is potential dependent in the hydrogen region of platinum and independent in the double layer region. From low potential scan rate voltammetry and DME stripping experiments, it was shown that the DME oxidation mechanism occurred via several reaction paths. At low potentials, DME oxidation leads to the existence of a positive current plateau. “In situ” Infrared Reflectance Spectroscopy experiments were carried out to identify the intermediate and reaction products of DME adsorption and oxidation at different potentials. COL (linearly bonded CO), COB (bridge bonded CO), adsorbed COOH species and CO2 were detected. From these electrochemical and spectro-electrochemical results, it was proposed that some adsorbed DME was hydrolysed and directly oxidized to CO2 or HCOOH species and some partially blocked platinum sites at the surface forming Pt–CHO and/or Pt–CO. Then, as soon as platinum becomes able to activate water, a bifunctionnal mechanism occurs to form either HCOOH or CO2 again following two different reaction paths.  相似文献   

19.
The adsorption and reaction of CO on Rh particles supported on stoichiometric and partially reduced CeO2(111) surfaces was studied using a combination of HREELS and TPD. A fraction of the CO adsorbed on the supported Rh particles was found to undergo dissociation to produce adsorbed C and O atoms. TPD results for isotopically labeled CO demonstrated that O atoms produced by CO dissociation rapidly exchange with the oxygen in the ceria lattice. The fraction of adsorbed CO which dissociated was found to increase significantly with the extent of reduction of the CeO2(111) surface, suggesting that oxygen vacancies on the surface of the support play a direct role in the CO dissociation reaction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A catalytic dense membrane reactor (CDMR) is used to physically separate the reaction step from the reoxidation of the catalyst. By decoupling the redox mechanism prevailing in mild oxidation of hydrocarbons, the operating conditions may be optimized resulting in an increase of selectivity. The membranes are made up of BIMEVOX oxides, obtained by partial substitution of V in γ-Bi4V2O11 by ME (Co, Cu, Ta). Experiments performed on BIMEVOX dense membranes using propene and propane are described in terms of, (i) active sites on polished or unpolished surfaces, (ii) operating conditions (T, pO2 in the high oxygen partial pressure compartment), which determine the selectivity, either to mild oxidation products (acrolein, hexadiene, CO), or to partial oxidation products (CO, H2), and, (iii) nature of ME cations and relative properties. The discussion deals with the respective role of electronic versus oxide ion conductivities which depend on defects in the structure as well as on the redox properties of cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号