首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Two‐dimensional simulation and experimental studies of flow‐rate‐controlled coinjection molding were carried out. Skin polymer was injected first, and then both skin and core polymers were injected simultaneously into a center‐gated disk cavity through a two‐channel nozzle to obtain an encapsulated sandwich structure. The physical modeling and simulation developed, reported in Part I of this series, were based on the Hele–Shaw approximation and the kinematics of the interface to describe the multilayer flow, and the interface development was used to predict the skin/core distribution in the moldings. The effects of rheological properties and processing conditions on the material distribution, penetration behavior, and breakthrough phenomena were investigated. The predicted and measured results were found to be in a good agreement. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2310–2318, 2003  相似文献   

2.
The sequential coinjection molding (SCIM) process has always been regarded as a challenging multiphase flow problem, which includes skin and core polymer melts together with gas. Thus, this article presents a 3D mathematical model for it, in which the governing equations of gas, skin, and core melts are united into a system namely the generalized Navier‐Stokes equations. By doing this, the model can be solved simply by applying the finite volume SIMPLE method on the collocated grid. The core penetration process is simulated by level set method, which can capture two different types of moving interface simultaneously at different time. By simulating the SCIM process of a centrally gated rectangular plate and then comparing the numerical results with available experiment results, the proposed mathematical model is validated and the influences of skin/core volume ratio, injection temperature, and core injection delay on the depth of core penetration are analyzed in detail. Then, the sequential coinjection of a line‐gated plate is investigated numerically, obtaining some important information in the gap‐wise direction, which cannot be caught by 2.5D model. All the numerical results show that the multiphase flow model proposed in this article is effective and can be used to describe the flow behaviors of polymer melt in the SCIM process. POLYM. ENG. SCI. 55:1707–1719, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
A theoretical study of pressure‐controlled sequential sandwich transfer molding of rubber compounds under isothermal conditions has been carried out to obtain a two‐layered sandwich structure. A physical model, numerical simulation procedure, and a numerical algorithm have been formulated based on the Hele‐Shaw approximation along with the kinematics and dynamics of interface evolution. Based on the developed numerical simulation code, the effect of various processing conditions on the material distribution and interface shape can be evaluated and predicted. Comparison with experiments is carried out in Part II of this study. Polym. Eng. Sci. 44:687–696, 2004. © 2004 Society of Plastics Engineers.  相似文献   

4.
Gas‐assisted injection molding can effectively produce parts free of sink marks in thick sections and free of warpage in long plates. This article concerns the numerical simulation of melt flow and gas penetration during the filling stage in gas‐assisted injection molding. By taking the influence of gas penetration on the melt flow as boundary conditions of the melt‐filling region, a hybrid finite‐element/finite‐difference method similar to conventional‐injection molding simulation was used in the gas‐assisted injection molding‐filling simulation. For gas penetration within the gas channel, an analytical formulation of the gas‐penetration thickness ratio was deduced based on the matching asymptotic expansion method. Finally, an experiment was employed to verify this proposed simulation scheme and gas‐penetration model, by comparing the results of the experiment with the simulation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2377–2384, 2003  相似文献   

5.
Whether it is feasible to perform an integrated simulation for structural analysis, process simulation, as well as warpage calculation based on a unified CAE model for gas‐assisted injection molding (GAIM) is a great concern. In the present study, numerical algorithms based on the same CAE model used for process simulation regarding filling and packing stages were developed to simulate the cooling phase of GAIM considering the influence of the cooling system. The cycle‐averaged mold cavity surface temperature distribution within a steady cycle is first calculated based on a steady‐state approach to count for overall heat balance using three‐dimensional modified boundary element technique. The part temperature distribution and profiles, as well as the associated transient heat flux on plastic–mold interface, are then computed by a finite difference method in a decoupled manner. Finally, the difference between cycle‐averaged heat flux and transient heat flux is analyzed to obtain the cyclic, transient mold cavity surface temperatures. The analysis results for GAIM plates with semicircular gas channel design are illustrated and discussed. It was found that the difference in cycle‐averaged mold wall temperatures may be as high as 10°C and within a steady cycle, part temperatures may also vary ∼ 15°C. The conversion of gas channel into equivalent circular pipe and further simplified to two‐node elements using a line source approach not only affects the mold wall temperature calculation very slightly, but also reduces the computer time by 95%. This investigation indicates that it is feasible to achieve an integrated process simulation for GAIM under one CAE model, resulting in great computational efficiency for industrial application. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 339–351, 1999  相似文献   

6.
Simulation and experimental studies have been carried out on the transient gas‐liquid interface development and gas penetration behavior during the cavity filling and gas packing stage in the gas‐assisted injection molding of a spiral tube cavity. The evolution of the gas/melt interface and the distribution of the residual wall thickness of skin melt along with the advancement of gas/melt front were investigated. Numerical simulations were implemented on a fixed mesh covering the entire cavity. The residual thickness of a polymer layer and the length of gas penetration in the moldings were calculated using both the simulation and model developed in Part I of this study and commercial software (C‐Mold). Extensive molding experiments were performed on polystyrene at different processing conditions. The obtained results on the gas bubble dynamics and penetration behaviors were compared with those predicted by the present simulation and C‐Mold, indicating the good predictive capability of the proposed model. Polym. Eng. Sci. 44:992–1002, 2004. © 2004 Society of Plastics Engineers.  相似文献   

7.
A theoretical study has been carried out on the transient gas‐liquid interface development and gas penetration behavior during the cavity filling and gas packing stage in the gas‐assisted injection molding (GAIM) of a tube cavity. A mathematical formulation describing the evolution of the gas/melt interface and the distribution of the residual wall thickness of skin melt along with the advancement of gas/melt front is presented. The physical model is put forward on the basis of Hele‐Shaw approximation and interface kinematics and dynamics. Numerical simulation is implemented on a fixed mesh covering the entire cavity. The model and simulation can deal with both primary and secondary gas penetrations. The predicted and measuredresults are compared in Part II of this study to validate the theoretical model. Polym. Eng. Sci. 44:983–991, 2004. © 2004 Society of Plastics Engineers.  相似文献   

8.
Heat transfer at the interfacial contact is a dominant factor in the thermal behavior of glass during nonisothermal glass molding process. Recent research is developing reliable numerical approaches to quantify contact heat transfer coefficients. In most previous studies, however, both theoretical and numerical models of thermal contact conductance in glass molding attempted to investigate this factor by either omitting surface topography or simplifying the nature of contact surfaces. In fact, the determination of the contact heat transfer coefficient demands a detailed characterization of the contact interface including the surface topography and the thermomechanical behavior of the contact pair. This paper introduces a numerical approach to quantify the contact heat transfer by means of a microscale simulation at the glass-mold interface. The simulation successfully incorporates modeling of the thermomechanical behaviors and the three-dimensional topographies from actual surface measurements of the contact pair. The presented numerical model enables the derivation of contact heat transfer coefficients from various contact pressures and surface finishes. Numerical predictions of these coefficients are validated by transient contact heat transfer experiments using infrared thermography to verify the model.  相似文献   

9.
In precision glass molding process, the required accuracy for the final size and shape of the molded lenses as well as the complexity of this technology calls for a numerical simulation. The current paper addresses the development of an FE model for thermo-mechanical simulation of the precision glass molding process including heating, pressing, and cooling stages. Temperature-dependent viscoelastic and structural relaxation behavior of the glass material are implemented through a FORTRAN material subroutine (UMAT) into the commercial FEM program ABAQUS, and the FE model is validated with a sandwich seal test. Subsequently, precision molding of several glass rings is performed at three different pressing temperatures, and the experimental deformation of the glass rings at the end of the molding is compared with the predicted ones from FE simulation. Furthermore, the transient and residual stress distribution inside the glass rings are calculated by the developed FE model, and the effects of some important process parameters such as interface friction and mold temperature on the FE results are assessed. The developed FE model can be employed to predict the deformation behavior, final size/shape, and the residual stress state inside the glass lenses in a precision glass molding process.  相似文献   

10.
周国发 《化工学报》2004,55(7):1173-1178
基于聚合物多组分成型技术的工程背景建立了全三维非稳态非等温多相分层充模流动的理论模型,提出了求解理论模型的稳定高效的数值算法,通过数值模拟给出了不同流变性能参数、过程条件下聚合物多相分层充模流动成型过程的界面不稳定形成过程和不稳定界面形貌的定量对比,在此基础上通过理论分析,揭示了界面不稳定的产生机理,并研究了流变性能参数和过程条件对分层界面形貌和界面不稳定影响的规律.模拟研究表明,模拟结果与Mohammad等的实验研究结论相吻合.  相似文献   

11.
A numerical simulation of a coining type of injection‐compression molding is developed. A hybrid finite element/finite difference method is employed to model the temperature and pressure fields of the process using a non‐isothermal compressible flow model. Simulation results for CD‐R molding with respect to injection pressure and mold displacement are compared with experimental observations using an optical grade of polycarbonate. The simulation shows similar trends as experimental observations on the dependence of various processing parameters such as melt temperature, mold temperature, and packing pressure. However, the mold displacement measurement does not show the effect of punch delay time as does the simulation, and needs further investigation.  相似文献   

12.
A numerical algorithm is developed to simulate the injection–compression molding (ICM) process. A Hele–Shaw fluid‐flow model combined with a modified control‐volume/finite‐element method is implemented to predict the melt‐front advancement and the distributions of pressure, temperature, and flow velocity dynamically during the injection melt filling, compression melt filling, and postfilling stages of the entire process. Part volumetric shrinkage was then investigated by tracing the thermal–mechanical history of the polymer melt via a path display in the pressure–volume–temperature (PVT) diagram during the entire process. Influence of the process parameters including compression speed, switch time from injection to compression, compression stroke, and part thickness on part shrinkage were understood through simulations of a disk part. The simulated results were also compared with those required by conventional injection molding (CIM). It was found that ICM not only shows a significant effect on reducing part shrinkage but also provides much more uniform shrinkage within the whole part as compared with CIM. Although using a higher switch time, lower compression speed, and higher compression stroke may result in a lower molding pressure, however, they do not show an apparent effect on part shrinkage once the compression pressure is the same in the compression‐holding stage. However, using a lower switch time, higher compression speed, and lower compression stroke under the same compression pressure in the postfilling stage will result in an improvement in shrinkage reduction due to the melt‐temperature effect introduced in the end of the filling stage. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1640–1654, 2000  相似文献   

13.
The development of molecular orientation in thermotropic liquid crystalline polymers (TLCPs) during injection molding has been investigated using two‐dimensional wide‐angle X‐ray scattering coordinated with numerical computations employing the Larson–Doi polydomain model. Orientation distributions were measured in “short shot” moldings to characterize structural evolution prior to completion of mold filling, in both thin and thick rectangular plaques. Distinct orientation patterns are observed near the filling front. In particular, strong extension at the melt front results in nearly transverse molecular alignment. Far away from the flow front shear competes with extension to produce complex spatial distributions of orientation. The relative influence of shear is stronger in the thin plaque, producing orientation along the filling direction. Exploiting an analogy between the Larson–Doi model and a fiber orientation model, we test the ability of process simulation tools to predict TLCP orientation distributions during molding. Substantial discrepancies between model predictions and experimental measurements are found near the flow front in partially filled short shots, attributed to the limits of the Hele–Shaw approximation used in the computations. Much of the flow front effect is however “washed out” by subsequent shear flow as mold filling progresses, leading to improved agreement between experiment and corresponding numerical predictions. POLYM. ENG. SCI.,, 2011. © 2011 Society of Plastics Engineers  相似文献   

14.
Simulation and experimental study of the pressure‐controlled sequential sandwich transfer molding of two SBR rubber compounds under isothermal condition have been carried out to obtain a two‐layered sandwich structure. One SBR compound, which is intended for the skin material, is first laid up in the cavity. Then, another SBR compound, intended for the core material, is transferred to penetrate into the skin material and to push the lay‐up to fully fill the cavity, resulting in an encapsulated skin/core sandwich structure. Two cases involving different material combinations with different viscosity ratios have been studied. The rheological interaction of the skin/core components and its effect on the penetration behavior and interface shape have been investigated. The influence of processing conditions, such as the volume fraction transferred and pressure, is discussed. The penetration and encapsulation behavior, and the interface development are found to be significantly affected by the rheological properties of the compounds and the volume fraction transferred. However, at a constant volume fraction transferred, the pressure imposed during transfer molding is found to have a little effect on the interface development. These experimental findings are in good agreement with the present predictions based on the model and simulation proposed in Part I of this study. Polym. Eng. Sci. 44:697–713, 2004. © 2004 Society of Plastics Engineers.  相似文献   

15.
An innovative production process for PET bottles ad containers is analyzed in this article. Liquid Bi‐Orientation (LBO) is a liquid supported stretch blow molding (SBM), which combines the separate blowing and filling phases of conventional SBM. The process modification is mainly characterized by forming the bottle using the desired liquid product instead of pressurized air. Consequently, possible improvements evolve regarding production cycle time, energy consumption and machine footprint. To make use of these capabilities, comprehensive process understanding is required, which can be increased using numerical simulation methods. Therefore, in this article, an LBO process model is set‐up and experimentally evaluated. The model explicitly considers the fluid‐structure interaction between liquid and PET, which significantly influences the PET forming behavior. The key simulation parameters namely the strong rate and temperature dependency of PET and a realistic process parameter determination are also included. The model is evaluated using two different methods to show the reliability of the process prediction. POLYM. ENG. SCI., 55:933–944, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
This article is principally concerned with the morphology and crystallinity of isotactic polypropylene (iPP) parts molded by injection molding, during which a self‐interference flow (SIF) occurs for the melt in the cavity. Scanning electron microscopy shows that a transverse flow takes place in SIF samples. Wide‐angle X‐ray diffraction and differential scanning calorimetry show that SIF moldings exhibit a γ phase, in addition to α and β phases, and high crystallinity. Meanwhile, the results for iPP moldings made by the conventional flow process, that is, conventional injection molding, are reported for comparison. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2791–2796, 2003  相似文献   

17.
In this study an autocatalytic model was used to describe the cure of a polyester system containing various promoters and an inhibitor. The effect of the initiator concentration was investigated. Isothermal DSC measurements were used to determine the kinetic parameters for the curing reaction. The rate of curing increased with increasing initiator concentration. The parameters were found to be temperature dependent. The nonlinear regression analysis showed that by fixing one parameter at a constant value the temperature dependency of the other parameters was described by simple relationships. The model was then compared to the experimental data. The reaction rate could be predicted fairly well in a wide range of temperatures. These results will be used to model the cure of this resin in a resin transfer‐molding (RTM) process. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2553–2561, 2003  相似文献   

18.
基于Kriging与GA的双层变模温注射成型收缩控制策略   总被引:1,自引:1,他引:0       下载免费PDF全文
王梦寒  刘晓  危康  李雁召 《化工学报》2017,68(1):391-397
高温、高压的成型条件,使双层变模温制品的成型收缩对工艺参数的变化极为敏感,双层变模温制品的成型收缩控制策略成为提高制品质量的关键。以某空调遥控器前盖双层变模温成型工艺开发为例,探讨并制定了其成型收缩的控制策略。确定了考量成型收缩的多目标评价体系及参数变量,以拉丁超立方取样设计试验,并利用数值模拟软件进行充模、保压及冷却等过程模拟获取试验数据,建立了基于Kriging代理模型的变量与评价指标间的数学关系;利用遗传算法对数学关系进行迭代,寻找最优成型收缩的评价指标及变量组合;最后,将模拟及生产试验对研究策略的科学有效性进行验证。  相似文献   

19.
High density closed‐cell polyethylene foams (450–950 kg/m3) were prepared by compression molding, and their flexural and tensile moduli were measured in order to study (1) the normalized modulus as a function of the normalized density, and (2) the effect of thin skins on flexural and tensile moduli. For the flexural data, it was found that the model of Gonzalez and the I‐beam model of Hobbs predicted the data very well in the range of void volume fractions under study (0–55%). For the tensile data, it was found that a combination of the differential scheme or the square power‐law model with the sandwich structure gave the best predictions. Finally, we found that thin skins have an important effect on the flexural properties of polymer foams, while they seem to have a negligible effect on the tensile properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2139–2149, 2003  相似文献   

20.
The vacuum infusion molding process is becoming increasingly popular for the production of large composite parts. A comprehensive model of the process has not been proposed yet, making its optimization difficult. The flexible nature of the vacuum bag coupled to the varying pressure inside the mold cavity results in a variation of the cavity thickness during the impregnation. A complete simulation model must incorporate this phenomenon. In this paper, a complete analysis of the vacuum infusion molding process is presented. The analysis is not restricted to the theoretical aspects but also reviews the effect of the main processing parameters. The parameters investigated in this paper are thought to be those of most interest for the process, i.e. the compaction of the reinforcement, the permeability, the infusion strategy and the presence of flow enhancement layers. Following the characterization experiments, a 1‐D model for the vacuum infusion molding process is presented. This model is derived assuming that an elastic equlibrium holds in the mold cavity during mold filling. Even though good agreement was found between simulation results and experiments, it is concluded that additional work is needed on the numerical model to integrate interesting findings from the experimental part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号