首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The blend materials from waterborne polyurethane (WPU)/starch (ST) with different contents (10–90 wt %) were satisfactorily prepared by using the solution casting method. Their miscibility, structure, and properties were investigated by wide‐angle X‐ray diffraction (WAXD), scanning electron microscope (SEM), different scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and the tensile tests, respectively. The results indicated that tensile strength of composite materials not only depended on the starch content, but also related to the microstructure of WPU. The sample WPU2 (1.75 of NCO/OH molar ratio) exhibited hard‐segment order, but WPU1 (1.25 of NCO/OH molar ratio) had no hard‐segment order. The appropriate starch filled into WPU not only decreased the ordered region of soft‐segment matrix, but also hindered the formation of hard‐segment ordered structure. The blend material from 80 wt % WPU1 and 20 wt % starch exhibited better tensile strength (27 MPa), elongation at break (949%), and toughness than others. With an increase of starch content, the WPU matrix with dispersed starch in the blends transited to dual‐phase continuity and then to starch matrix with dispersed WPU. The results suggested that a certain extent of miscibility existed between WPU and starch in the blend materials on the whole composition ratio. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3325–3332, 2003  相似文献   

2.
Waterborne polyurethane (WPU) and casein (1 : 1 by weight) were blended at 90°C for 30 min, and then were crosslinked by adding 1–10 wt % ethanedial to prepare a series of sheets. Their structure and properties were characterized by using infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical analysis, and tensile testing. The results indicated that crosslinked blend sheets exhibited a certain degree of miscibility, and exhibited much higher tensile strength and water resistivity than did the WPU, casein, and the uncrosslinked blend from WPU and casein. When the ethanedial content was 2 wt %, the tensile strength and elongation at break of crosslinked sheets achieved 19.5 MPa and 148% in the dry state, and 5.0 MPa and 175% in the wet state, respectively. A 2 wt % content of ethanedial plays an important role in the enhancement of mechanical properties, thermal stability, and water resistivity of the blends of WPU and casein as a result of intermolecular crosslinking. This work provided a new protein plastic with good water resistivity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 332–338, 2004  相似文献   

3.
To improve the mechanical and water vapor barrier properties of soy protein films, the transparent films were prepared by blending 5 wt % soy protein isolate (SPI) alkaline water solution with 2 wt % carboxymethylated konjac glucomannan (CMKGM) aqueous solution and drying at 30 °C. The structure and properties of the blend films were studied by infrared spectroscopy, wide‐angle X‐ray diffraction spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential thermal analysis, and measurements of mechanical properties and water vapor transmission. The results demonstrated a strong interaction and good miscibility between SPI and CMKGM due to intermolecular hydrogen bonding. The thermostability and mechanical and water vapor barrier properties of blend films were greatly enhanced due to the strong intermolecular hydrogen bonding between SPI and CMKGM. The tensile strength and breaking elongation of blend films increased with the increase of CMKGM content: the maximum values achieved were 54.6 MPa and 37%, respectively, when the CMKGM content was 70 wt %. The water vapor transmission of blend films decreased with the increase of CMKGM content: the lowest value achieved was 74.8 mg · cm?2 · d?1 when the CMKGM content was 70 wt %. The SPI–CMKGM blend films provide promising applications to fresh food packaging. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1095–1099, 2003  相似文献   

4.
We prepared a series of blend membranes by blending waterborne polyurethane (WPU) and carboxymethylchitin (CMCH) in aqueous systems. The effects of CMCH content on the miscibility, morphology, thermal stability, and mechanical properties of the blend membranes were investigated by dilute solution viscometry (DSV), Fourier transform infrared spectroscopy, wide‐angle X‐ray diffraction (WXRD), scanning electron microscopy, dynamic mechanical analysis (DMA), thermogravimetric analysis, ultraviolet (UV) spectroscopy, and tensile testing. The miscibility parameter of the WPU/CMCH aqueous solution obtained by DSV predicted that the blends of WPU and CMCH were miscible or partially miscible. Moreover, the partial miscibility of the blend membranes over the entire composition range were confirmed by FTIR, WXRD, DMA, and UV spectroscopy to support the conclusion from DSV. New hydrogen bonds were formed between CMCH and WPU in the blend membranes, resulting in strong intermolecular interactions. By inducing the CMCH, we improved the tensile strength, thermostability, and organic solvent resistance of the blend membranes significantly. Therefore, this study not only provided a novel way to prepare an environmentally–friendly material but also expanded the application of chitin and CMCH. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1233–1241, 2003  相似文献   

5.
Utilizing anionic waterborne polyurethane (WPU) as a plasticizer, for the first time, we prepared new soy protein isolate (SPI) plastics. The WPU was prepared by using the emulsion‐extending‐chain method, and mixed with soy protein in aqueous dispersion. The mixture was cast, cured, pickled and hot‐pressed to form SPI plastics plasticized with WPU. The plastics sheets were characterized by infrared spectroscopy, scanning electron microscopy, ultraviolet spectrophotometry and wide‐angle X‐ray diffraction, and their properties were measured by using dynamic mechanical analysis, differential scanning calorimetry and tensile testing. The results revealed that SPI plastics plasticized with WPU possess good mechanical properties, such as a tensile strength (σb) of 7–19 MPa, water resistance (σb(wet)b(dry) = 0.4–0.5), optical transmittance and thermal stability, because of the good miscibility and strong interaction between WPU and SPI. With an increase of WPU content from 20 to 50 wt%, the elongation at break (εb) value of the sheets increased from 50 up to 150 %, and is much higher than that of the pure SPI sheet. WPU as a plasticizer can play an important role in improving the properties of SPI plastics. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
Films from castor oil‐based polyurethane (PU) prepolymer and nitroguar gum (NGG) with different contents (10–70 wt %) were prepared through solution casting method. The networks of PU crosslinked with 1,4‐butanediol were interpenetrated by linear NGG to form semi‐interpenetrating polymer networks (semi‐IPNs) in the blend films. The miscibility, morphology, and properties of the semi‐IPNs coded as PUNG films were investigated with Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, wide‐angle X‐ray diffraction, density measurement, ultraviolet spectroscopy, thermogravimetric analysis, tensile, and solvent‐resistance testing. The results revealed that the semi‐IPNs films have good miscibility over the entire composition ratio of PU to NGG under study. The occurrence of hydrogen‐bonding interaction between PU and NGG played a key role in improvement of the material performance. Compared with the pure PU film, the PUNG films exhibited higher values of tensile strength (11.7–28.4 MPa). Meanwhile, incorporating NGG into the PU networks led to an improvement of thermal stability and better solvent‐resistance of the resulting materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 4068–4079, 2007  相似文献   

7.
Alginate/ N‐Succinyl‐chitosan (SCS) blend fibers, prepared by spinning their mixture solution through a viscose‐type spinneret into a coagulating bath containing aqueous CaCl2, were studied for structure and properties with the aid of infrared spectroscopy (IR) and X‐ray diffraction (XRD). The results indicated a good miscibility between alginate and SCS, because of the strong interaction from the intermolecular hydrogen bonds. The best values of the dry tensile strength and breaking elongation were obtained when SCS content was 30 wt %. The wet tensile strength decreased with the increase of SCS content, and the wet breaking elongation achieved maximum value when the SCS content was 30 wt %. Introduction of SCS in the blend fiber improved water‐retention properties of blend fiber compared to pure alginate fiber. Antibacterial fibers, obtained by treating the fibers with aqueous solution of silver nitrate, exhibited good antibacterial activity to Staphylococcus aureus. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
With a synthesis route differing from previous methods, novel semi‐interpenetrating polymer networks (semi‐IPNs), coded UNK‐II, were synthesized by the initial mixing of nitrokonjac glucomannan (NKGM) with castor oil in butanone and the subsequent addition of toluene diisocyanate (TDI) to begin the polymerization reaction in the presence of 1,4‐butanediol (BD) as a chain extender at 60°C. The results from dynamic mechanical analysis, differential scanning calorimetry, and ultraviolet spectroscopy indicated that a certain degree of microphase separation occurred between soft and hard segments of polyurethane (PU) in the UNK‐II sheets. The α‐transition temperature, glass‐transition temperature, heating capacity, and tensile strength increased with an increase in the NKGM content, and this suggested an interaction between PU and NKGM in the UNK‐II sheets. In a previous method, semi‐IPN materials (PUNK) were synthesized by the polymerization reaction between castor oil and TDI, and then this PU prepolymer was mixed with NKGM and cured in the presence of BD as a chain extender. The PUNK sheets had relatively good miscibility and mechanical properties. However, for UNK‐II sheets prepared by the method reported in this work, NKGM mainly played a role in reinforcement. When the NKGM content was less than 10%, the UNK‐II sheets exhibited good miscibility, tensile strength (26–28 MPa), and breaking elongation (130–140%), similar to those of PUNK materials. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1948–1954, 2003  相似文献   

9.
Novel blend films of konjac glucomannan (KGM) with gelatin were prepared by using the solvent‐casting technique. Transparent blend films were obtained in all blending ratios of the two polymers. The structure and physical properties of the films were investigated by Fourier transform IR, wide angle X‐ray diffraction, thermogravimetric analysis, differential thermal analysis, scanning electron microscopy (SEM), and strength tests. The results indicated that intermolecular interactions between the KGM and gelatin occurred that were caused by hydrogen bonding and the physical properties of the films largely depended on the blending ratio. The crystallinities of the blend films decreased with the increase of the KGM. The thermal stability and mechanical properties (tensile strength and elongation at break) of the films were improved by blending KGM with gelatin. It is worth noting that the blend films had a good tensile strength of 38 MPa when the KGM content in the blend films was around 30 wt %. The surface morphology of the blend films observed by SEM displayed a certain level of miscibility. Furthermore, the water absorbability of the blend films was also measured and discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1596–1602, 2001  相似文献   

10.
With anionic waterborne polyurethane (WPU) as a plasticizer and ethylene glycol diglycidyl ether (EGDE) as a crosslinker, we successfully prepared crosslinked soy protein isolate (SPI) plastics. Anionic WPU was mixed with SPI and EGDE in an aqueous dispersion at room temperature. The mixed aqueous dispersion was cast and cured, and the obtained material was pickled and hot‐pressed to produce the crosslinked SPI/WPU sheets. The resulting sheets containing about 60 wt % SPI were characterized with infrared spectroscopy, scanning electron microscopy, atomic force microscopy, dynamic mechanical analysis, and tensile testing, and biodegradation testing of the sheets was performed in a mineral salt medium containing microorganisms. The results revealed that the crosslinked SPI/WPU plastics with EGDE concentrations of 2–4 wt % possessed high miscibility, good mechanical properties, and water resistivity. In addition, the crosslinked sheets could be biodegraded, and the half‐life of the biodegradation for a sheet crosslinked with 3 wt % EGDE was calculated to be less than 1 month. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 465–473, 2005  相似文献   

11.
Ming Zeng  Yuxiang Zhou 《Polymer》2004,45(10):3535-3545
We prepared two series of semiinterpenetrating polymer network (semi-IPN) films from cross-linked waterborne polyurethane (WPU) and carboxymethylchitin (CMCH) in the aqueous solution on the glass and Teflon as the hydrophilic and hydrophobic substrates, respectively, by casting method. The chemical compositions, structure and morphologies of the films were examined by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). The miscibility, thermal stability and mechanical properties of the films were investigated by density measurement, dynamic mechanical analysis (DMA), ultraviolet (UV) spectroscopy, thermogravimetric analysis (TGA), tensile testing and solvent swelling testing. The results revealed that the semi-IPN films exhibited good miscibility when CMCH content was lower than 35 and 65 wt% for the films prepared on the glass and Teflon, respectively, resulting in higher light transmittance, thermal stability and tensile strength than the WPU film. Interestingly, the films prepared with the Teflon as the substrate possessed better miscibility and higher storage modulus, thermal stability, tensile strength and solvent-resistance than that with the glass as the substrate over the entire composition range studied here. This difference can be attributed that a strong intermolecular interaction occurred between WPU and CMCH to form a dense architecture, owing to that two kinds of macromolecules all were repulsed from the Teflon surface and forced to concentrate into inner surface. It has been confirmed that the hydrophility and hydrophobility of the solid substrate significantly influenced the structures and properties of the casting films, and using Teflon solid substrate can more effectively improve the miscibility and properties of the semi-IPN materials with hydrophilic character than glass one. We proposed a model describing the formation of WPU/CMCH semi-IPN films cast on the hydrophilic and hydrophobic substrates to illustrate the different structures of two types of films.  相似文献   

12.
聚酯型WPU(水性聚氨酯)具有较高的力学强度和粘接强度,但是其较高的结晶性会导致胶膜透明性较差。以聚丙二醇(PPG)、聚己二酸丁二醇酯二醇(PBA)、异佛尔酮二异氰酸酯(IPDI)、2,2′-二羟甲基丙酸(DMPA)和1,4-丁二醇(BDO)等为原料,制备PPG改性聚酯型WPU。研究结果表明:PPG改性聚酯型WPU的黏度适中,储存稳定性良好;随着PPG含量的不断增加,WPU胶膜的透明性因结晶受阻程度增大而变好,相应胶粘剂的T型剥离强度和拉伸强度下降,而断裂伸长率升高;当w(PPG)=10%~20%时,相应WPU胶粘剂的透明性、T型剥离强度(≥1.97 N/mm)、拉伸强度(≥14.7 MPa)和断裂伸长率(≥421%)俱佳。  相似文献   

13.
Regenerated cellulose/chitin blend films (RCCH) were satisfactorily prepared in 6 wt % NaOH/4 wt % urea aqueous solution by coagulating with 5 wt % CaCl2 aqueous solution then treating with 1 wt % HCl. The structure, miscibility, and mechanical properties of the RCCH films were investigated by infrared, scanning electron microscopy, ultraviolet spectroscopies, X‐ray diffraction, tensile test, and differential scanning analysis. The results indicated that the blends were miscible when the content of chitin was lower than 40 wt %. Moreover, the RCCH blend film achieved the maximum tensile strength in both dry and wet states of 89.1 and 43.7 MPa, respectively, indicating that the tensile strength and water resistivity of the RCCH film containing 10–20 wt % chitin was slightly higher than that of the RC film unblended with chitin. Structural analysis indicated that strong interaction occurred between cellulose and chitin molecules caused by intermolecular hydrogen bonding. Compared to the mechanical properties of chitin film, those of the blend films containing 10–50 wt % chitin were significantly improved. This work provided a novel way to obtain directly chitin material blended in the aqueous solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1679–1683, 2002  相似文献   

14.
Blend films of poly (4‐vinylpyridine) and lignin were prepared by the casting method. Their structure and properties were studied by Fourier transform infrared (FTIR), wide‐angle X‐ray diffraction (WXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG), and differential scanning calorimetry (DSC). The IR spectra of the blend films indicated that hydrogen‐bonding interaction occurred between poly (4‐vinylpyridine) and lignin. The glass transition temperature of these blends increased with the increase of lignin content, which indicated that these blends were able to form a miscible phase due to the formation of intermolecular hydrogen bonding between the hydroxyl of lignin and the pyridine ring of poly (4‐vinylpyridine). The thermostability of these blends decreased with the increase of lignin content. Initially, an appreciable increase in the measured tensile strength was achieved with a lignin content of 15%, at which the maximum value of 33.03 MPa tensile strength was reached. At a 10% lignin incorporation level, the blend film exhibited a maximum value of 9.03% strain. When the threshold in lignin content for blend films exceeded that limit of 10% lignin, the strain behavior of these blend films deteriorated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1405–1411, 2005  相似文献   

15.
将聚(3羟基丁酸共聚4羟基丁酸酯)[P(3,4HB)]与聚(3羟基丁酸共聚3羟基戊酸酯)(PHBV)通过溶剂共混的方式进行共混改性,研究了改性后材料力学性能的变化情况,并进一步利用差示扫描量热法和热重法进行了表征,最后利用Pseudomonas mendocina DS04-T菌株对共混材料的降解性能进行了考查,并利用扫描电子显微镜观察了薄片降解后的微观形貌。结果表明,当P(3,4HB)与PHBV的混合比例为80/20时复合材料有较好的力学性能,断裂伸长率和拉伸强度均达到最大值;当PHBV组分的含量小于60 %时,共混物均形成了稳定的晶体结构,且两组分具有较强的相互作用和较好的相容性;Pseudomonas mendocina DS04-T对共混材料的完全降解时间大大低于单独降解P(3,4HB)所需的时间。  相似文献   

16.
All Blend films were prepared from a mixture of 2 wt % chitosan in acetate solution and 4 wt % quaternized poly(4‐vinyl‐N‐butyl) pyridine (QPVP) in aqueous solution and dried at room temperature for 72 h to obtain the films. Their structure and properties were studied by infrared (IR), wide‐angle X‐ray diffraction (WXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG), and differential scanning calorimetry (DSC). Crystallinities of the blend films decreased with the increase of QPVP when weight of QPVP content was less than 15.0 wt %. The thermostability, tensile strength, and breaking elongation of the films in dry state were better than those of chitosan film. Tensile strength of the blend film dried at 40°C under vacuum for 24 h achieved 56.38 MPa when the weight ratio of chitosan to QPVP was 9 : 1. The structural analysis indicated that there was a strong interaction between chitosan and QPVP resulting from strong adhesion between both polymers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 559–566, 2004  相似文献   

17.
Six film samples of varying compositions of linear low‐density polyethylene (LLDPE), 10–35 wt %, and high‐density polyethylene (HDPE), 40–65 wt %, having a fixed percentage of low‐density polyethylene (LDPE) at 25 wt % were extruded by melt blending in a single‐screw extruder (L/D ratio = 20 : 1) of uniform thickness of 2 mil. The tensile strength, elongation at break, and impact strength were found to increase up to 60 wt % HDPE addition, starting from 40 wt % HDPE, in the blends and then decreased. The blend sample B‐500 was found to be more thermally stable than its counterparts. The appearance of a single peak beyond 45 wt % HDPE content in the blend in dynamic DSC scans showed the formation of miscible blend systems and this was further confirmed by scanning electron microscopic analysis. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1691–1698, 2005  相似文献   

18.
We have successfully prepared a series of blend membranes from cellulose and soy protein isolate (SPI) in NaOH/thiourea aqueous solution by coagulating with 5 wt % H2SO4 aqueous solution. The structure and properties of the membranes were characterized by Fourier transform infrared spectroscopy, ultraviolet‐visible spectrometry, dynamic mechanical thermal analysis, scanning electron microscopy (SEM), transmission electron microscopy, and tensile testing. The effects of SPI content (WSPI) on the structure and properties of the blend membranes were investigated. The results revealed that SPI and cellulose are miscible in a good or a certain extent when the SPI content is less than 40 wt %. The pore structure and properties of the blend membranes were significantly improved by incorporation of SPI into cellulose. With an increase in WSPI from 10 to 50 wt %, the apparent size of the pore (2re) measured by SEM for the blend membranes increased from 115 nm to 2.43 μm, and the pore size (2rf) measured by the flow rate method increased from 43 to 59 nm. The tensile strength (σb) and thermal stability of the blend membranes with lower than 40 wt % of WSPI are higher than that of the pure cellulose membrane, owing to the strong interaction between SPI and cellulose. The values of tensile strength and elongation at break for the blend membranes with 10 wt % of WSPI reached 136 MPa and 12%, respectively. The blend membranes containing protein can be used in water because of keeping σ of 10 to 37 MPa. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 748–757, 2004  相似文献   

19.
A series of casting films blended from starch and waterborne polyurethane (STPU) in aqueous solution were prepared. The structure and properties of the films were investigated by infrared spectroscopy, ultraviolet spectroscopy, scanning electron micrography, strength test, thermogravimetric analysis, and different scanning calorimetry. The results showed that the tensile strength and modules of air‐dried STPU blend films increased with the increase of starch content, while elongation decreased. When starch content was in the range from 80 to 90 wt %, the blend films showed significantly higher tensile strength, breaking elongation, water resistivity, and light transmittance than that of pure starch film, resulting from the miscibility between starch and waterborne polyurethane. Moreover, the STPU films containing 90 wt % starch have higher thermal stability than pure waterborne polyurethane film, and their light transmittance was close to the polyurethane, due to the existence of a strong intermolecular hydrogen bonding between starch and polyurethane. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2006–2013, 2001  相似文献   

20.
A sulfonated polystyrene (SPS) and a polyurethane containing a tertiary amine group (NPU) were blended in solution. The effect of blend composition was studied in the blend of SPS with 9.83 mol % of sulfonation (SPS-9.83) and NPU with 33 mol % of MDEA (NPU-33). As the SPS concentration increases, a significant improvement of miscibility is observed. The tensile strength of the blends is greater than either pure NPU or SPS. A maximum strength and a maximum density occur at 50 wt % SPS. The stress–strain curve shows a well-defined yield when the SPS concentration in the blend is 30 or 50 wt %. The yield is more dramatic in the blend with 50 wt % SPS than that of 30 wt % SPS. At a lower SPS concentration, the blend behaves like a rubber, while a higher SPS concentration in the blend results in a brittle failure before yield. An increase in the sulfonation level of SPS in the SPS–NPU-33 (30/70) blends leads to an improved miscibility. A significant enhancement of tensile strength is observed as the sulfonation increases. A clear yield point on the stress–strain curves occurs when the sulfonation of SPS in the blend is 4.79 mol % or greater. Increasing the MDEA content of NPU up to 8.3 mol % can lead to an enhancement of tensile strength. A further increase in the MDEA content has little influence on the tensile strength, but a clear yield on the stress–strain curve occurs. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:2035–2045, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号