首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
中空聚合物微球的制备——酸含量的影响   总被引:5,自引:0,他引:5  
采用预乳化滴加工艺结合多段乳液聚合方法先制备聚(甲基丙烯酸甲酯-丙烯酸丁酯-甲基丙烯酸)/聚(苯乙烯-甲基丙烯酸)核壳乳液,随后以碱/酸溶胀处理得到了单分散性优异且中空度为30%的中空聚合物微球.以动态光散射(DLS)、透射电子显微镜(TEM)和场发式扫描电子显微镜(FESEM)等对各阶段乳液聚合的胶粒大小和分布以及形态结构进行了表征.实验考察了种子酸含量对种子和核壳乳胶的特性以及中空聚合物微球形态的影响规律.结果表明,种子制备时的酸用量以30%~35%为宜,核壳胶粒中约85%的酸单元存在于核聚合物内部.另外,探讨了核壳胶粒在碱/酸溶胀处理过程中的中空形成机理.  相似文献   

2.
杨东东 《广东化工》2016,(12):314-315
采用半连续乳液聚合法,以酸性乳胶粒子为核,在核表面包覆弱亲水性的中间层,然后在中间层的表面包覆强疏水的壳层,并向壳层中引入交联单体,制备出兼具溶胀能力且稳定性良好的聚合物乳胶粒子。探讨了乳化剂用量、核壳比、交联剂用量与pH值对微球形态的影响,总结出最优的工艺条件。结果表明,制备聚合物中空微球的最佳实验条件为:酸性核制备阶段乳化剂用量为0.1wt%,壳层制备阶段核壳比为0.8,交联剂用量为3-6wt%,碱溶胀阶段初始pH值为10.78。  相似文献   

3.
采用乳液聚合协同碱渗透溶胀法,制备了亚微米中空微球聚合物。通过SEM、TEM、DLS分别对中空微球的形貌和粒径进行表征,并考察了中空微球聚合物的遮盖性能。研究了引发剂用量对核粒径的影响,中间层和壳层聚合物配比对微球形貌结构及其遮盖性能的影响。结果表明,在核制备过程中,核的粒径随引发剂用量的增加而减小;对于平均粒径为148 nm的核,当中间层甲基丙烯酸丁酯(BMA)用量为10 wt%、甲基丙烯酸(MAA)用量为3 wt%,甲基丙烯酸甲酯(MMA)用量为87 wt%,壳层苯乙烯(St)用量为97 wt%,交联剂用量为3 wt%时,可制备平均粒径414 nm,中空率为40.6 %的聚合物微球,且微球表面较为光滑,此时中空微球聚合物具有优异遮盖性能,遮盖度达到66 %。  相似文献   

4.
陈剑伟  朱明 《中国涂料》2012,27(8):41-43,58
采用预乳化饥饿型滴加方法结合碱溶胀处理制备了聚(甲基丙烯酸-甲基丙烯酸甲酯-丙烯酸正丁酯)/聚(甲基丙烯酸甲酯-苯乙烯-甲基丙烯酸)中空聚合物微球。试验集中讨论了种子阶段粒子大小,种子阶段引发剂用量、扩径时不同核壳比及不同碱进行碱处理时对形成中空聚合物微球的影响。同时采用TEM观察聚合物微球结构。试验所得的聚合物微球外径约为400 nm,内径约为220 nm。  相似文献   

5.
采用种子乳液聚合法合成不同核壳比的聚甲基丙烯酸(MAA)-丙烯酸丁酯(BA)一甲基丙烯酸甲酯(MMA)/聚苯乙烯(St)-丙烯腈(AN)核壳乳液,经碱/酸溶胀法处理制备了中空聚合物微球。结果表明,中空聚合物的形态不仅与核壳比有关,也与溶胀处理时碱的种类、温度、溶胀剂及其用量、乳液pH值等因素有关,当核壳比为1:10,溶胀剂用量为核壳乳胶粒质量的1.5倍时,可以得到最大中空度接近30%的中空聚合物微球。  相似文献   

6.
用沉积表面反应法制备了以聚苯乙烯为核、Mn-Fe氧化物为壳的磁性核-壳微球. 考察了锰含量对核-壳球磁性的影响,分别采用烧结法和溶剂萃取法去除核-壳球内的聚苯乙烯以制取中空微球. 讨论了烧结温度与所形成的中空微球比表面积的关系,考察了溶剂萃取法去除聚苯乙烯的效果,比较了两者所形成的中空微球的性能. 结果表明,烧结法所得微球性能优于溶剂萃取法所得微球. 探讨了烧结法形成中空磁性球的最佳条件,在400℃下煅烧核-壳微球可以得到饱和磁化强度为68.66 emu/g、比表面积为27.8438 m2/g的含锰铁氧化物磁性中空微球.  相似文献   

7.
以含羧基的乳胶粒为核,采用种子乳液聚合制备多层核壳聚合物微球,经碱液处理后可得聚合物中空微球。通过TEM、SEM、激光粒度和zeta电位仪等对制备的微球进行表征,研究了壳层交联剂DVB用量对聚合过程和微球形貌的影响。结果表明,控制单体滴加速度有利于含羧基核乳胶粒的制备;DVB用量过多会导致种子乳液聚合不稳定,凝胶量增多;随着壳层交联剂用量的增加,碱处理后的聚合物微球依次呈现塌陷和中空结构,空心率可达35.4%。  相似文献   

8.
宛焱  梁亮 《精细化工》2014,31(8):937-940,945
采用核壳乳液聚合法制备聚甲基丙烯酸甲酯(MMA)-甲基丙烯酸(MAA)-丙烯酸丁酯(BA)为亲水核,聚苯乙烯(St)-丙烯腈(AN)-二乙烯苯(DVB)为疏水硬壳的核壳型乳液,然后进行碱溶胀处理,制得具有中空结构的遮盖性空心乳液。考察了MAA用量、核壳比(核单体与壳单体的质量之比,下同)对空心乳液中空度及遮盖性的影响,并利用透射电镜(TEM)、扫描电镜(SEM)对空心乳液的结构形态进行了表征。结果表明,当核单体中MAA用量为核单体总量的30%(质量分数),核壳比为1∶6时,乳胶粒的中空度约为50%,空心乳液遮盖性最强,应用于水性油墨中能够获得良好的综合性能。  相似文献   

9.
以氧化锌为模板,在超声作用及表面活性剂的辅助作用下正硅酸乙酯原位水解制备核/壳型氧化锌/二氧化硅复合微球,然后在盐酸溶液中溶解氧化锌核制备中空二氧化硅微球,采用红外光谱仪(FTIR)和透射扫描电子显微镜(TEM)表征其结构和形貌。最后,将中空二氧化硅微球应用于聚丙烯酸酯薄膜中考察其透水汽性和力学性能。结果表明,采用Tween-80和聚乙烯吡咯烷酮为表面活性剂可有效分散氧化锌,且有利于二氧化硅包覆在其表面,从而成功获得核/壳型氧化锌/二氧化硅复合微球。同时,采用盐酸作为刻蚀剂,在pH=2.0的条件下,可有效刻蚀氧化锌,获得中空二氧化硅微球。FTIR表明形成了中空二氧化硅,中空二氧化硅微球的壳层内部附有一层未被刻蚀的氧化锌。TEM表明,该中空二氧化硅微球粒径为47nm左右,其壳层厚度为12nm,空腔直径为23nm。将制备的中空二氧化硅微球引入到聚丙烯酸酯薄膜中,该中空二氧化硅微球可显著改善聚丙烯酸酯薄膜的透水汽性能和力学性能。当中空二氧化硅微球的质量分数为1.5%时,聚丙烯酸酯薄膜的透水汽性能达到最佳。  相似文献   

10.
为了制得具有中空结构的聚合物微球,首先以十二烷基苯磺酸钠(SDBS)为乳化剂,在其用量低于CMC的条件下,进行甲基丙烯酸甲酯、甲基丙烯酸和丙烯酸丁酯的乳液聚合,制备了带羧基的种子乳液。以种子乳液为基础可通过核壳乳液聚合和适当的碱处理制得具有中空结构的聚合物微球。采用粒度仪和TEM测定了乳胶粒的直径及其分布,采用TEM和ESEM对乳胶粒结构形态进行了表征。研究了种子制备过程中单体加料方式、乳化剂用量及反应温度等对聚合稳定性、种子乳胶粒直径及其分布的影响,确定了制备种子乳胶粒的最佳工艺条件。当SDBS用量为单体总量的0.5%,采用一次性加入单体的进料工艺,反应温度为80℃时,可以得到粒径为140nm,且粒径呈单分散分布的种子乳胶粒。  相似文献   

11.
In this study, well‐monodispersed hollow latex particles were synthesized through semicontinuous seed emulsion polymerization, and the effect of the hollow latex particles' intermediate layer–core ratios on their morphology and opacity ability were studied. The results show that when the intermediate layer–core ratios increased from 6 to 10, the swelling degree of the hollow latex particles decreased, and the intensity gradually increased, but the opacity ability increased first and then decreased. When the intermediate layer–core ratio was 8, the opacity ability of the hollow latex particles was the best. When the intermediate layer–core ratios were 6 and 7, the surface of the hollow latex particles was rough, and they showed a great swelling degree, big cavity, and thin shell, and few of latex particles collapsed or ruptured. When the intermediate layer–core ratios were 9 and 10, the hollow latex particles had a smooth surface, thick shell, and small swelling degree and cavity, and roughly, there was no collapse or rupture of the hollow latex particles. When the intermediate layer–core ratio was 8, the swelling degree of the hollow latex particles was moderate. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42268.  相似文献   

12.
This research work involved studies on the synthesis and characterization of core/shell ionomeric latexes in order to understand the process of ionic aggregate formation. The core/shell structure of the ionomeric latexes prepared in this study confines the ionic domains to the copolymeric matrix within the shell polymer, and in addition, benefits from the ionomeric properties and core/shell structure simultaneously. Core/shell ionomeric latexes with polystyrene cores and styrene/n-butyl acrylate/methacrylic acid terpolymer shells were synthesized by a semicontinuous seeded emulsion copolymerization process. The distribution of the methacrylic acid in the core/shell latexes was determined using conductometric titration techniques. The results of the conductometric titration analysis indicate that the principal locus of the carboxyl groups in the core/shell latexes is at the particle surface, but specific information about the differences in the distribution of methacrylic acid inside the latex particles could not be obtained. Mechanical characterization of the core/shell ionomeric latex films was carried out to understand the structure-property relationships using Dynamic Mechanical Analysis (DMA) and tensile testing. It was discovered that the core/shell latexes exhibited significantly different properties, owing to the differences in the overall carboxyl content and surface loading. Extensive studies were carried out to study the effect of water plasticization on the mechanical behavior of the core/shell ionomeric latex films; water adsorption causes the solvation of ionic aggregates. A preliminary investigation of the effect of the type of counterion used for the neutralization of carboxyl groups on the properties of core/shell ionomeric latex films was also carried out. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Multistage hydrophilic core/hydrophobic shell latexes containing carboxyl groups were prepared via multistep seeded emulsion copolymerization, and particles with different morphologies were obtained after alkali post‐treatment. Influences of the type and content of unsaturated acid monomer on the polymerization and the particle morphology were investigated based on conductometric titration and TEM observation. Results showed that the hydrophilic core/hydrophobic shell particles could be easily formed using methacrylic acid (MAA) instead of acrylic acid. When MAA was 12.2 wt % in the core latex preparation, only fine pores existed inside the alkali‐treated particles. With MAA increased from 20.0 to 30.0 wt %, the alkali‐treated particle morphology evolved from porous, hollow to collapse structure. When MAA further increased to 40.0 wt %, it was difficult to prepare uniform multistage particles and distinct morphologies including solid, deficient swelling, hollow and collapse structure were coexistent in the alkali‐treated particles. Moreover, the forming mechanism of different morphologies was proposed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Hollow polymer latex particles containing a hydrophilic core were prepared by seeded emulsion polymerization with MAA/BA/MMA/St as comonomers, followed by stepwise alkalization treatment with ammonia. The size and morphology of composite latex particles was determined by TEM. The effects of the seeded emulsion polymerization conditions and alkalization treatment on the size and hollow structure of latex were investigated. The results showed that the optimum content of crosslinking agent in the shell polymers was about 0.5–1.0 wt %, emulsifier was about 0.8–1.1 wt %, and the core/shell weight ratio was 1/7. To obtain uniform hollow latex particles with large size, the starved feeding technique should be adopted in seeded emulsion polymerization, and the neutralization temperature should equal to the Tg of the shell polymer. Then, the obtained polymer particles under this condition had an excellent hollow structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
以聚苯乙烯-丙烯酸微球为模板制备ZnS/CdS复合空心微球   总被引:1,自引:0,他引:1  
采用了酸性萃取剂二(2-乙基己基)磷酸(P2O4)的钠盐作为乳化剂制备了聚苯乙烯-丙烯酸微球.当乳化剂的含量在1.56%~3.54%范围内逐渐增大时,乳液粒子颗粒的直径在300~120姗范围内逐渐减小.以聚苯乙烯-丙烯酸微球为模板制备了ZnS/CdS复合空心微球.所制得的样品采用透射电镜法进行了表征.  相似文献   

16.
In this study, the hollow latex particle was synthesized by three processes. The first process was to synthesize the poly(methyl methacrylate-co-methacrylic acid) (poly(MMA-MAA)) copolymer latex particles by the method of soapless emulsion polymerization. Following the first process, the second process was to polymerize MMA, MAA, 3,3-(trimethoxysilyl) propyl methacrylate (MPS), and ethylene glycol dimethacrylate in the presence of poly(MMA-MAA) latex particles to form the linear poly(MMA-MAA)/crosslinking poly(MMA-MAA-MPS) core–shell latex particles. In the third process, the core–shell latex particles were heated in the presence of ammonia to form the poly(MMA-MAA-MPS) hollow latex particles. A sufficient heating time and high-heating temperature were necessary for the ammonia to dissolve the linear poly(MMA-MAA) core to form a perfect hollow structure. The crosslinking poly(MMA-MAA-MPS) shell was a barrier for the ammonia to diffuse into the latex particles so that the latex particle with the high-crosslinking shell showed an imperfect hollow structure. Besides, the hollow poly(MMA-MAA-MPS) latex particles reacted with ZnO nanoparticles, which were synthesized by a traditional sol-gel method, to form the polymer/inorganic poly(MMA-MAA-MPS)/ZnO composite hollow latex particles. With the increase of crosslinking degree would increase the amount of ZnO bonding. Moreover, the poly(MMA-MAA-MPS) hollow latex particles were used as carriers to load with the model drug, caffeine. The release of caffeine from poly(MMA-MAA-MPS) hollow latex particles was investigated.  相似文献   

17.
In this study, the latex particles with a polyacrylate core and a polydimethylsiloxane shell via 3-(methacryloxypropyl)-trimethoxysilane as the space arm to link the core and shell have been prepared by semi continuous seeded emulsion polymerization. And several key polymerization reaction conditions such as the emulsifier concentration, 3-(methacryloxypropyl)-trimethoxysilane dosages, feeding sequence and the acrylates/siloxanes ratio were detailedly discussed. Then, the optimal condition to prepare stable core/shell particles was selected and a proper preparation process has been established. The as-synthesized particles were characterized by TEM and XPS. The clear core/shell structure of the particles could be observed through analysis TEM. In addition, the results of XPS analyses manifested that siloxanes had been grafted on the surface of the polyacrylate particles and they distributed on the outmost layer of the particles. Finally, the surface hydrophobicity of the film formed by latex particles was investigated by the water absorption ratio measurement. The results indicated the developed latex particle provided with a fair water-repellency property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号