首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional solid-liquid flow is mathematically formulated by means of the “two-fluid” approach and the two-phase k-ε-Ap turbulence model. The turbulent fluctuation correlations appearing in the Reynolds time averaged governing equations are fully incorporated. The solid-liquid flow field and solid concentration distribution in baffled stirred tanks with a standard Rushton impeller are numerically simulated using an improved “inner-outer” iterative procedure. The flow pattern is identified via the velocity vector plots and a recirculation loop with higher solid concentration is observed in the central vicinity beneath the impeller. Comparison of the simulation with experimental data on the mean velocities and the turbulence quantities of the solid phase is made and quite reasonable agreement is obtained except for the impeller swept volume. The counterpart of liquid phase is presented as well. The predicted solid concentration distribution for three experimental cases with the average solid concentration up to 20% is also found to agree reasonably with the experimental results published in the literature.  相似文献   

2.
The critical impeller speed, NJS, for complete suspension of solid particles in the agitated solid-liquid two-phase system in baffled stirred tanks with a standard Rushton impeller is predicted using the computational procedure proposed in Part I. Three different numerical criteria are tested for determining the critical solid suspension. The predicted NJS is compared with those obtained from several empirical correlations. It is suggested the most reasonable criterion for determining the complete suspension of solid particles is the positive sign of simulated axial velocity of solid phase at the location where the solid particles are most difficult to be suspended.  相似文献   

3.
The multiphase flow in the solid-liquid tank stirred with a new structure of Intermig impeller was analyzed by computational fluid dynamics(CFD).The Eulerian multiphase model and standard k-ε turbulence model were adopted to simulate the fluid flow,turbulent kinetic energy distribution,mixing performance and power consumption in a stirred tank.The simulation results were also verified by the water model experiments,and good agreement was achieved.The solid-liquid mixing performances of Intermig impeller with different blade structures were compared in detail.The results show that the improved Intermig impeller not only enhances the solid mixing and suspension,but also saves more than 20% power compared with the standard one.The inner blades have relatively little influence on power and the best angle of inner blades is 45°,while the outer blades affect greatly the power consumption and the optimized value is 45°.  相似文献   

4.
The critical impeller speed, NJS, for complete suspension of solid particles in the agitated solid-liquid two-phase system in baffled stirred tanks with a standard Rushton impeller is predicted using the computational procedure proposed in Part Ⅰ. Three different numerical criteria are tested for determining the critical solid suspension. The predicted NJS is compared with those obtained from several empirical correlations. It is suggested the most reasonable criterion for determining the complete suspension of solid particles is the positive sign of simulated axial velocity of solid phase at the location where the solid particles are most difficult to be suspended.  相似文献   

5.
Solid-liquid suspension in an agitated tank with a draft tube was investigated witha newly developed infrared turbidimeter for measuring solid concentration.The diameter of theflared inlet transition tube and the distance from the inlet to the tank bottom are two importantparameters for draft tube design The NAX-4 impeller,developed in this study,is characterized byits high flow efficiency and low power consumption.Some modifications are made to the Bald′smodel by considering the effects of solid concentration and fluid viscosity on the critical speed forcomplete off-bottom suspension.The modified equation fits the experimental data satisfactority andcan be used in scale-up design  相似文献   

6.
低比转速高速复合离心叶轮的流动模拟和试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump.  相似文献   

7.
Radial profiles of solid concentration and velocity for concurrent downward gas-solid suspension in a140mm inside diameter fast fluidized bed were investigated.The influence of gas velocity,solid circulating rateand axial position on radial profiles of solid concentration and particle velocity has been examined.It hasbeen found that an annular region of high solid concentration exists at r/R=0.94.At both the center and wallregion,the solid concentration and the particle velocities are relatively low.The shape of radial solid con-centration profile curves is mainly dependent on the cross-section averaged voidage,and the shape of radialparticle velocity profile is mainly affected by the gas velocity and cross-section averaged voidage.Based on the radial profiles of solid concentration and particle velocity,the solid mass flux profile and thenonuniformity of solids flow are discussed in this paper.It is shown that solids flow in CDFFB is much moreuniform than that in UFFB.  相似文献   

8.
A coaxial mixer meeting the actual demand of a system with high and variable viscosity is investigated. It has an outer wal-scraping frame and a double inner impeller consisting of a four-pitched-blade turbine and Rushton turbine. The power consumption and flow field characteristics of the coaxial mixer in laminar and transitional flow are simulated numerically, and then the distribution of velocity field, shear rate and mass flow rate are analyzed. The simulation results indicate that the outer frame has little effect on the power consumption of the double inner impeller whether in laminar or transitional flow, whereas the inner combined impeller has a great effect on the power consumption of the outer frame. Compared with the single rotation mode, the power consumption of the outer frame will decrease in co-rotation mode and increase in counter-rotation mode. The velocity, shear rate and mass flow rate are relatively high near the inner impeller in all operating modes, and only under double-shaft agitation wil the mixing performance near the free surface be improved. In addition, these distributions in the co-rotation and counter-rotation modes show little difference, but the co-rotation mode is recommended for the advantage of low power consumption.  相似文献   

9.
范茏     王卫京     杨超     毛在砂 《中国化学工程学报》2004,12(3):324-329
Stirred tanks are used extensively in process industry and one of the most commonly used impellers in stirred tanks is the R.ushton disk turbine. Surprisingly few data are available regarding flow and mixing in stirred-tank reactors with Rushton turbine in the laminar regime, in particular the laminar flow in baffled tanks.In this paper, the laminar flow field in a baffled tank stirred by a standard R.ushton turbine is simulated with the improved inner-outer iterative method. The non-inertial coordinate system is used for the impeller region, which is in turn used as the boundary conditions for iteration. It is found that the simulation results are in good agreement with previous experiments. In addition, the flow number and impeller power number calculated from the simulated flow field are in satisfactory agreement with experimental data. This numerical method allows prediction of flow structure requiring no experimental data as the boundary conditions and has the potential of being used to scale-up and design of related process equipment.  相似文献   

10.
Accurate solid concentration measurement plays a key role in the process industry. Measurements analyzed offline can be used to estimate process efficiencies, to identify problems in a flow, and to validate computational models. Online measurements can be used for active control. Electrical capacitance tomography (ECT) is a unique measuring technique with great potential in multiphase flow measurement. Experimental studies are carried out on a solid concentration measurement in a cyclone separator dipleg, using ECT. In this experiment eight electrodes are selected for the ECT sensor that is placed on the straight tube of the dipleg. The fluctuating characteristics according to the screw feeder and the effect of the airflow rate from the top of the cyclone are analyzed. The feasibility and reliability of the method are verified by the experimental results.  相似文献   

11.
循环硫化床上升管中动态行为的拟流体模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
The kinetic theory of granular flow (KTGF) is modified to fit the Einstein′s equation for effective viscosity of dilute flow. A pseudo-fluid approach based on this modified KTGF is used to simulate the dynamic formation and dissipation of clusters in a circulating fluidized bed riser. The agglomeration of particles reduces slip velocity within particle clusters, and hence results in two reverse trends: discrete particles are lifted by air while particle clusters fall down along the wall. The dynamic equilibrium of these two types of motion leads to the characteristic sigmoid profile of solid concentration along the longitudinal direction. The predicted solid velocity, lateral and longitudinal profiles of solid volume fraction and annulus thickness are in reasonable agreement with experimental results.  相似文献   

12.
The macroscopic mixing in a stirred tank with different tracer injection locations, impeller speeds and impeller positions is simulated numerically by solving the transport equation of the tracer based on the whole flow field in the baffled tank with a Rushton disk turbine numerically resolved using the improved inner-outer iterative procedure. Predicted mixing time is compared well with the literature correlations. The predicted residence time distribution of the stirred tank is very close to the present experimental results. The effect of the installation of a draft tube on the mixing time and residence time distributions is addressed.  相似文献   

13.
The concentration and orientation of fiber in a turbulent T-shaped branching channel flow are investigated numerically. The Reynolds averaged Navier-Stokes equations together with the Reynolds stress turbulent model are solved for the mean flow field and the turbulent kinetic energy. The fluctuating velocities of the fluid are assumed as a random variable with Gaussian distribution whose variance is related to the turbulent kinetic energy. The slender-body theory is used to simulate the fiber motion based on the known mean and fluctuating velocities of the fluid. The results show that at low Reynolds number, fiber concentration is high in the flow separation regions, and fiber orientation throughout the channel is widely distributed with a slight preference of aligning along the horizontal axis. With increasing of Re, the high concentration region disappears, and fiber orientation becomes ho- mogeneous without any preferred direction. At high Reynolds number, fiber concentration increases gradually along the flow direction. The differences in the distribution of concentration and orientation between different fiber aspect ratio are evident only at low Re. Both Re and fiber aspect ratio have small effect on the variance of orientation angle.  相似文献   

14.
Large Eddy Simulations of Mixing Time in a Stirred Tank   总被引:2,自引:0,他引:2  
Large eddy simulations (LES) of mixing process in a stirred tank of 0.476m diameter with a 3-narrow blade hydrofoil CBY impeller were reported. The turbulent flow field and mixing time were calculated using LES with Smagorinsky-Lilly subgrid scale model. The impeller rotation was modeled using the sliding mesh technique. Better agreement of power demand and mixing time was obtained between the experimental and the LES prediction than that by the traditional Reynolds-averaged Navier-Stokes (RANS) approach. The curve of tracer response predicted by LES was in good agreement with the experimental. The results show that LES is a reliable tool to investigate the unsteady and quasi-periodic behavior of the turbulent flow in stirred tanks.  相似文献   

15.
A computational fluid-dynamics model is presented for predicting the two-phase two-dimensional liquid phase flow on a distillation column tray based on the modification of Navier-Stokes Equation by considering both the resistance and the enhanced turbulence created by the uprising vapor. Experimental measurement of the local liquid phase velocity on an air-water simulator of 1.2m in diameter by using the hot film anemometer is briefly described. Two of the conventional fluid-dynamic constants are readjusted for the case of liquid flow on a tray by fitting the experimental data. The predicted local liquid phase velocity and direction of flow by the present model are confirmed satisfactorily by the authors' experimental measurements and by the data from literature. By the aid of the present model, the concentration field on the tray can be computed for the evaluation of the enhancement of liquid phase concentration across a tray. The advantages of applying computational fluid-dynamics to tray column design  相似文献   

16.
Three Dimensional Simulation of Liquid Flow on Distillation Tray   总被引:2,自引:0,他引:2       下载免费PDF全文
The liquid flow on a single-pass sieve distillation tray is simulated with a three-dimensional computational fluid dynamics (CFD) program with the K-ε turbulence model. In the model, a source term SMi is formulated in the Navier-Stokes equations to represent the interfacial momentum transfer and another term SC is added to the mass transfer equation as the source of interfacial mass transfer. The simulation provides the detailed information of the three-dimensional distribution of liquid velocity on the tray, the circulation area and the concentration profile along the height of liquid layer.  相似文献   

17.
A numerical method for predicting fiber orientation is presented to explore the flow properties of turbu-lent fiber suspension flowing through a stock pump impeller. The Fokker-Planck equation is used to describe the distribution of fiber orientation. The effect of flow-fiber coupling is considered by modifying the constitutive mode. The three-dimensional orientation distribution function is formulated and the corresponding equations are solved in terms of second-order and fourth-order orientation tensors. The evolution of fiber orientation, flow velocity and pressure, additional shear stress and normal stress difference are presented. The results show that the evolutions of fiber orientation are different along different streamlines. The velocity and its gradient are large in the concave wall region, while they are very small in the convex wall region. The additional shear stress and normal stress difference are large in the inlet and concave wall regions, and moderate in the mid-region, while they are almost zero in most downstream regions. The non-equilibrium fiber orientation distribution is dominant at the inlet and the concave wall regions. The flow will consume more energy to overcome the additional shearing losses due to fibers at the inlet and the concave wall regions. The change of flow rates has effect on the distribution of additional shear stress and normal stress difference. The flow structure in the inlet and concave wall regions is essential in the resultant rheological properties of the fiber suspension through the stock pump impeller, which will directly affect the flow efficiency of the fiber suspension through the impeller.  相似文献   

18.
两相/三相翼形浆搅拌反应器的泛点研究(英文)   总被引:1,自引:0,他引:1       下载免费PDF全文
The flooding characteristics of hydrofoil impeller were systematically investigated in a two-and three-phase 383 mm i.d. stirred tank operated on air, water and spherical glass beads. The volumetric solid concen-tration Cs was varied from 0 to 25%. And the superficial gas velocity Ug was at the range of 0-0.096 m·s-1. A fast and objective method for identifying flooding point NF is developed based on the statistical analysis of the pressure fluctuation signals. It is found, the effect of solid concentration on the flooding point NF depends on the gas velocity. At the lower gas velocity (Ug = 0.010 m·s-1), the solid concentration has only a minor effect. However, it displays a very significant effect on the flooding point NF at the medium and high gas velocity. The flooding point NF linearly increases with the gas velocity Ug, at lower solid concentration (Cs = 0, 10%). When Cs = 20%, the behavior of NF versus Ug becomes more complex. The correlations of the flooding characteristics in the slurry stirred tank are proposed by considering the solid concentration effect.  相似文献   

19.
MASS TRANSFER IN TURBULENT PULSATING FLOWS   总被引:1,自引:0,他引:1  
The effect of flow oscillation to the mass transfer between turbulent fluid and solid wall was investigatedby measuring the mass transfer rate between fluid and pipe wall with imposed oscillating flow usingelectrochemical method.The velocity and concentration field in the viscous sublayer which controls the mass trans-fer in such a process was simulated by a simple wave model of single harmonics.Experimental results confirmthat the flow oscillation has no influene on time averaged mass transfer rate,but the phase difference betweenphase averaged velocity field and concentration field shifts with the frequency of imposed oscillating flow.Numeri-cal analysis reveals that the concentration boundarylayer which is responsible for the mass transfer is muchthinner than the viscous sublayer which greatly weakens the influence of imposed oscillating flow on mass transfer.  相似文献   

20.
This paper integrated a two-dimensional axisymmetrical transient model applicable to cold-start emission applications. The model can be used to simulate and explain effects of the flow and temperature distribution on performance of a converter. The evolutions of distribution of the temperature and concentration in the monolith during the cold-start period and the effects of flow distribution in the monolith on the cold-start performance are simulated in terms of the integrated model. The investigation indicates that the axial and radial gradients of temperature of the solid become steeper as the inlet gas temperature ramp increases; this furthermore results in the movement of reaction region in the monolith, and the flow distribution in the monolith affects the radial distribution of temperature of the solid;the radial gradients of temperature of the solid become greater as the flow uniformity index decreases, whereas the light-off time doesn‘t always increase as the flow uniformity index decreases. The analyses on the distribution of temperature and concentration in the monolith show that the catalytic reaction zone concentrates in central area near the front face. The predicted curves of the velocity distribution have a good agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号