首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钠离子电池被认为是商业化锂离子电池最有前景的替代品而受到了极大关注。然而,嵌入型碳基负极材料的固有低比容量导致相对低的能量密度,极大地限制了其未来的应用。研究新型电极材料是研制新一代钠离子电池的基础。目前磷资源丰富,理论比容量高,可用于电池负极材料。综述单一黑磷及黑磷基复合材料作为钠离子电池负极材料的最新研究成果,阐述近几年黑磷基复合材料作为负极在储钠领域的研究进展,分析复合材料的制备及结构形貌对电化学性能的影响等,并展望黑磷基储钠负极材料的未来发展方向。  相似文献   

2.
绿色能源的应用,促使着电化学储能与转换技术的飞速发展。锂离子电池作为储能领域最成功的二次离子电池之一,已被应用于各种电子产品中,但是由于锂资源短缺造成锂离子电池的成本增加,限制了其在大规模储能设备领域的应用。因此,寻找价格低廉、性能优异的二次离子电池是当下的研究热门之一。钠离子电池不仅拥有和锂离子电池相似的工作原理,而且还具有成本低、资源丰度大和可逆容量高的特点,有望成功地代替锂离子电池而应用于商业化生产。本工作主要综述了钠离子电池负极材料的性能研究进展,首先根据钠离子在负极材料存储方式不同,分析归纳了负极材料的插层反应、合金化反应和转换反应三种储钠机制,然后介绍了负极材料的结构修改、元素掺杂和材料复合三种改性方式,随后重点介绍了碳基材料、钛基材料、合金类材料、转换类材料和有机材料等几种关键的钠离子电池负极材料的电化学性能和所面临的问题,最后,以实际生产和工业应用为基础,展望了钠离子电池负极材料的研究方向。  相似文献   

3.
室温钠离子电池以潜在的高性价比优势在大规模储能领域具有广阔发展空间。硬碳材料因其丰富的结构和优良电化学性能被认为是最有潜力的钠离子电池负极材料。但硬碳材料的储钠机理仍存在争论且电化学性能仍需进一步提高。本文在硬碳材料和其储钠机理两个方面综述了近年来硬碳材料储钠的研究进展,并对其发展前景进行了展望。  相似文献   

4.
程婷  时志强 《山东化工》2023,(20):120-122
无定形结构的硬炭以其不同于石墨有序结构的结构优势,以及低成本和原材料来源广,被认为是钠离子电池(SIBs)最有前途的碳基负极材料,其复杂的微观结构与钠储存有着密切的关系。在硬炭微观结构中缺陷,层间和纳米孔隙是硬炭储钠的三个关键特征结构,深入研究这些特征结构有利于实现高容量钠离子电池碳基负极的有效构造,并有利于推进钠离子电池产业化进程。最后对高性能钠离子电池负极的结构设计进行了展望。  相似文献   

5.
杨涵  张一波  李琦  张俊  陶莹  杨全红 《化工进展》2023,(8):4029-4042
随着电化学储能需求的不断攀升,加之锂资源储量不高、分布不均、成本高等因素影响,作为低成本二次储能电池的代表,钠离子电池迎来新的发展机遇,其研发和产业化迈入快车道。其中,原料丰富、性能优异的碳材料脱颖而出,成为钠离子电池负极的首要选择。本文面向实用化钠离子电池碳负极梳理了碳负极的研究进展,简要介绍了碳负极材料的储钠机制,重点论述了不同类型碳负极的设计思路及其实用化进展,最后分析探讨了实用化钠离子电池碳负极材料发展中面临的挑战及未来研究中需进一步重视的主要问题。  相似文献   

6.
负极材料的研究是钠离子电池实现商业化生产的关键要素之一,近年来已经取得了突破性进展。但是较大半径的钠离子在嵌/脱过程中对负极材料结构的影响非常大,进而导致可逆容量迅速降低。本文系统综述了钠离子电池负极材料的最新研究成果,阐述了碳基材料、钛基化合物、合金材料、金属化合物和有机化合物5类负极材料的制备工艺,并分析了这些材料的性能特点:碳基材料的研发技术成熟,但比容量和倍率性能有待提高;钛基化合物的结构性能良好,倍率性能出色,但存在比容量较低的缺点;合金材料和金属化合物都具有较高的理论比容量,但循环性能较差;有机化合物的研发尚处于起步阶段,有待深入研究。基于现有的研究基础,总结了材料的改性方法和取得的效果,并展望了钠离子电池负极材料的研究方向,分析指出表面碳包覆可以提升材料的电子传导性,纳米结构可以缩短钠离子的传输途径,多孔形貌有利于电解质对材料的浸润,而元素掺杂可以提升材料的反应活性,最终获得高性能钠离子电池负极材料。  相似文献   

7.
钠离子电池研究进展   总被引:1,自引:0,他引:1  
钠离子电池具有比能量高、安全性能好、价格低廉等优点,在储能领域有望成为锂离子电池的替代品。本文阐述了钠离子电池的研究现状,对钠离子电池研究的正负极材料、电解质的制备以及其电化学性能作了概述性讨论。正极材料有氧化物型、聚阴离子型;负极材料有碳基材料、钛基材料和合金负极材料等;电解液有有机溶剂电解液和凝胶聚合物电解液,并分别阐明了各种材料的优势和局限性。最后指出了这类高效钠二次电池体系有可能逐渐替代锂离子电池,并指明了现阶段发展钠离子的主要问题是不同体系材料的相互匹配。  相似文献   

8.
硬碳拥有容量高、工作电位低、成本低等优势,在钠离子电池负极中展现出潜在的应用前景。其最重要的特点是拥有丰富的微晶结构,这对钠离子的吸附及嵌入/脱出过程十分有益,使硬碳展现出优益的储钠性能。在实际应用中,硬碳存在首效低、稳定性不足以及倍率性能较差等问题,功能化设计是针对性改善硬碳上述缺陷的有效策略。结合目前硬碳功能化改性方面的研究工作,系统介绍了近年来关于硬碳负极在功能化设计方面的典型策略及最新研究进展,并探讨了功能化设计的优势与不足,为指导未来钠离子电池硬碳负极的商业化应用提供理论基础和技术支撑。  相似文献   

9.
钠离子电池的问世使硬炭材料成为了当前研究的重点,但高成本和低循环寿命等不足限制了其作为负极材料在钠离子电池中的应用。生物质炭材料作为硬炭材料的一种,凭借其低成本、可再利用等优势,逐步在储钠材料中占据重要地位。为了更好的了解生物质炭材料,本文综述了近年来生物质炭作为钠离子电池负极材料的研究进展,并对其在储能领域的发展提出了展望。  相似文献   

10.
本文综述了钠离子电池锑基负极材料的最新研究进展,包括金属锑,氧化锑,硫化锑以及硒化锑负极材料。总结了锑基钠离子电池锑基负极材料的结构特征及电化学储钠特性,并对钠离子电池锑基负极材料发展趋势进行了展望。  相似文献   

11.
电极材料的研究开发是钠离子电池技术发展和应用的关键之一,碳基负极材料具有原料丰富、成本低廉、可逆容量较大及倍率性能良好等优点,备受国内外专家、学者的关注。本文系统综述了钠离子电池碳基负极材料的最新研究进展,就石墨类和非石墨类碳基负极材料的分类和掺杂改性研究进行了详细介绍。石墨类材料有石墨和石墨烯,非石墨类材料有软碳和硬碳;元素掺杂改性主要是以N和S为主,并分别阐述了各种碳基负极材料的电化学性能及可能的充放电机理。分析了目前碳基负极材料面临着首次库仑效率较低、电压滞后现象严重、循环稳定性能不佳等问题,未来的发展方向主要是增大碳基负极材料的碳层间距、结构的纳米化以及优化制备工艺,以确保循环稳定性及倍率性能的优异性。  相似文献   

12.
钠离子电池(SIBs)因元素丰度高、成本低,在大规模储能领域具有广阔的应用前景,因此探索潜在的适配钠离子电池电极材料具有重要的研究意义。其中,高容量转化型负极材料硫化铁因元素丰度高、成本低、环境友好等优点备受关注。以活性大红染料为碳源,通过溶剂除杂和高温退火过程合成了小于2 nm超薄氮、硫掺杂碳材料包裹二硫化铁(FeS2/N,S-C)微米颗粒复合材料。三维连续的碳网络与杂原子掺杂,能够协同促进快速的电子传导,可有效缓解二硫化铁储钠过程中的体积膨胀;同时,质量分数低于4%的极低碳含量有助于提升电极和电池的质量及体积能量密度。研究结果表明,FeS2/N,S-C电极具有较高的可逆比容量(在0.1 A/g电流密度下可逆比容量达到758 mA·h/g)和优异的倍率性能(在10 A/g电流密度下保持207 mA·h/g的可逆比容量)。该研究工作不仅提供了一种潜在的低成本钠离子电池复合负极材料的制备方法,同时探索了高效氮掺杂碳包覆的新思路。  相似文献   

13.
以废弃植物生物质为基材制备的高值化钠离子电池负极纳米复合碳材料,工艺简单、成本低廉,有望成为传统石墨负极材料的替代品。本文系统梳理了废弃植物生物质应用于钠离子电池负极材料的最新研究现状,具体归纳了木质纤维素类废弃植物生物质(乔木类、秸秆类、干质果壳类)和多糖淀粉类废弃植物生物质(种子类)的生物模板法制备过程,深入阐释了其诸多电化学性能和独特形态结构形成的钠离子存储机理及构效关系,客观探讨了植物生物质基钠离子电池负极材料目前存在的一些问题,简要分析与非植物基钠离子电池负极材料的性能对比优势及未来发展方向,为植物生物质固废物这一大自然中储量巨大的可再生能源的高值化利用提供了新思路和新方法。  相似文献   

14.
刘浪浪  问娟娟 《当代化工》2014,(12):2690-2692
锂离子电池作为一种电源应用很广泛,但是在应用中存在一些不足,选取电化学性能良好的正负极材料是提高和改善锂离子电池电化学性能最重要的因素。从新型碳材料、硅基负极材料、锡基负极材料三方面介绍了目前锂离子电池的研究状况,并展望了锂离子电池负极材料的发展趋势。  相似文献   

15.
钠离子电池作为一种新型的储能体系,与比较成熟的锂离子电池体系相比,不仅是元素的变化,更重要的是电化学反应机理的变化。简要分析了钠离子电池的优点,以负极材料的电化学反应机理为基础,归纳概括了近期钠离子负极材料的研究进展,主要分为碳材料、合金类材料、过渡金属氧化物和硫化物及有机化合物四类,并介绍了相应材料的电化学性能,为开发综合性能优异的钠离子负极材料提供理论基础。  相似文献   

16.
为了开发过期藻酸双酯钠药片中的非医疗价值,首先采用扫描电子显微镜、能量色散X射线光谱仪及Fourier红外光谱仪研究了其微观形貌、元素组成及结构,然后进一步利用恒流充/放电与循环伏安技术研究了其电化学储钠/锂性能。结果表明:虽然藻酸双酯钠药片已经过期3年,但其主要成分和结构并未发生明显变化;在50 mA/g循环充/放电时,藻酸双酯钠负极材料在钠离子电池和锂离子电池中的首次放电比容量分别为126.6和282.3 mA?h/g,可逆放电比容量分别为95.7和158.5 mA?h/g,表现了良好的电化学储钠/锂性能及作为钠/锂离子电池负极活性材料的可行性。  相似文献   

17.
煤沥青是一种原料来源丰富且含碳量高的钠离子电池碳负极材料。以煤沥青为碳源,通过炭化法制得热解炭,利用XRD,SEM,Raman光谱等表征技术,系统研究了不同炭化温度(600℃~1 400℃)对煤沥青热解炭微观结构的影响规律。利用恒流充放电等测试,探究热解炭作为钠离子电池负极材料时的电化学性能,阐明“温度—结构—储钠性能”间的构效关系。结果表明:1 000℃是热解炭微观结构从无序向有序发展的转折点;当温度低于1 000℃时,热解炭为不规则的块状结构且表面平整光滑,未出现石墨微晶,具有较大的层间距和较高的无序度;当温度为800℃时,热解炭具有最大的层间距(d002=0.354 1 nm)和最高的无序度(ID/IG=2.57),其作为钠离子电池负极材料时,0.05 A/g电流密度下的可逆容量为177.0 mAh/g,首次库伦效率为73.87%,具有较好的倍率性能;当温度高于1 000℃时,石墨碳层生长和堆叠的速度迅速加快,石墨化程度增加,层间距减小,同时表面缺陷程度降低,Na+吸附位点减少,不利于储钠,热...  相似文献   

18.
锂离子电池多孔硅基复合负极材料的研究进展   总被引:1,自引:0,他引:1  
概述了多孔硅基负极材料在锂离子电池中的应用,重点介绍了材料结构和复合方式对其电化学性能的影响;分析了导致其循环性能降低的主要原因,指出控制电池循环过程中硅基材料体积变化、抑制SEI膜的增加是改善硅基负极材料循环性能的重要途径. 对多孔硅基复合负极材料的研究进行了展望,提出在纳米化和复合化的基础上,设计特殊孔道结构、制备多孔的硅/碳复合材料是推进硅基负极材料应用的重要研究方向.  相似文献   

19.
通过粉末X射线衍射、热重、差示扫描量热与扫描电子显微镜考察了6种改性钛酸锂材料的微观结构特征,并组装成扣式电池考察它们作为锂离子电池与钠离子电池负极材料时的电化学特征。结果表明:作为锂离子电池负极材料,无定形碳和碳纳米管包覆钛酸锂具有更高的可逆容量、优异的循环性能和良好的倍率性能;而作为钠离子电池负极材料,纳米化钛酸锂材料具有更好的储钠性能;一次粒子小于100 nm的钛酸锂材料,以0.1C充放电时可逆容量为155 m A·h/g,以0.2C放电、10C充电时,容量仍保持在118 m A·h/g。  相似文献   

20.
中间相炭微球在锂离子电池负极材料的应用进展   总被引:1,自引:0,他引:1  
中间相炭微球(MCMB)具有良好锂离子扩散性、导电性和机械稳定性等优势,是目前应用广泛、综合性能优异的锂离子电池负极材料,但较低理论比容量是制约其发展的关键因素。为了获得性能优良的MCMB基锂离子电池负极材料,改性修饰和复合材料已然成为目前研发重点。笔者论述了碳结构、表界面和复合材料等微观结构设计对MCMB负极材料电化学性能的影响。从碳堆积结构类型、有序性、层间距以及球体粒径大小等方面,论述了碳结构微观设计对MCMB电化学性能的影响。发现具有乱层结构的MCMB在充放电过程中内部产生应力较小,且碳结构较稳定,具有优异循环稳定性;内部具有大量微孔或碳层间距较大的MCMB,在充放电过程中可提高锂离子在电极中的迁移速率,并提供更多的储锂空间,一般具有优良的充放电比容量和倍率性能;小粒径MCMB具有较短的锂离子迁移路径和随之增加的比表面积,通常具有较好倍率性能,伴随着可逆比容量和充放电效率的衰减。从表界面碳层改性、包覆和掺杂改性等方面,论述了表界面改性对MCMB电化学性能的影响。表面碳层修饰可增加MCMB与电解液的相容性及其比表面积,提高了与电解液的接触面积及贮锂容量,改善了锂离子电池负极材料的电化学性能;另外,MCMB表面包覆一层无定型碳,可避免其表面与电解液直接接触,减少电化学副反应的产生,提升其可逆比容量。从碳活性物质复合材料、非碳活性物质复合材料等方面,论述了复合材料微观结构设计对MCMB电化学性能的影响。碳活性物质可降低MCMB内部碳层结构的有序性,减少锂离子嵌入过程中的内部应力,提升MCMB循环稳定性。非碳活性物质诱导MCMB生成更加有序的碳层结构,提高MCMB的比表面积,从而改善MCMB表面与电解液分子的接触能力及其嵌锂性能,有利于提升MCMB负极材料可逆比容量、循环性能和倍率性能。MCMB具有高碳层间距和多缺陷位点等结构特征,有利于钠离子自由脱嵌,应用于钠离子电池时具有良好的可逆比容量、循环稳定性和倍率性能。MCMB的不规则定向层状结构经活化等处理具有较高比表面积,可应用于超级电容器电极材料。最后提出在高性能锂离子电池电极材料快速发展的需求下,从微观结构角度设计MCMB纳米复合材料将是MCMB负极材料的研究重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号