首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以红薯淀粉为原料、N,N-亚甲基双丙烯酰胺(MBAA)为交联剂、Span-60和Tween-60为乳化剂、环己烷和三氯甲烷为油相、硝酸铈铵为引发剂,采用反相悬浮聚合法制备红薯淀粉交联微球,分别采用傅立叶变换红外光谱仪和扫描电子显微镜表征了其结构和形貌,通过单因素实验确定红薯淀粉交联微球的最佳制备条件为:淀粉溶液浓度10%、MBAA用量0.4g、油水比5∶2、引发剂用量0.25g。  相似文献   

2.
采用纳米Fe_3O_4对人造沸石(NZ)进行改性,研究了吸附剂投加量、废水pH、不同交联剂、离子含量等对改性磁性沸石微球去除废水中Pb~(2+)性能的影响,分析了改性沸石的吸附动力学和吸附等温线。结果表明,在Pb~(2+)溶液pH=3,吸附剂投加量为0.6 g/L条件下,钙交联纳米Fe_3O_4改性沸石微球(Ca-MZS)对溶液中Pb~(2+)的去除率达93.4%,最大吸附量为77.1 mg/g,较NZ的最大吸附量8.02 mg/g有明显提高。Ca-MZS比铁交联纳米Fe_3O_4改性沸石微球(Fe-MZS)的最大吸附量高2.57 mg/g。Ca-MZS对Pb~(2+)的吸附过程符合准2级动力学模型和Freundlich模型。Pb~(2+)溶液分别加入Na~+、K~+时,Ca-MZS对Pb~(2+)去除率分别下降了9.3个、16.1个百分点。  相似文献   

3.
采用盐酸浸泡和热处理的方法对香菇菌渣改性后制备吸附剂,研究其对模拟废水中Pb~(2+)的吸附性能,考察了初始浓度、温度、pH、吸附剂投加量和吸附时间5个因素对吸附性能的影响,并研究了改性菌渣吸附剂对Pb~(2+)的等温吸附和吸附动力学特征。结果表明:改性菌渣对Pb~(2+)模拟溶液的最佳吸附条件为:pH=5.0、吸附剂投加量1.6 g/L、初始浓度250 mg/L、温度25℃、吸附时间60min。在该条件下对Pb~(2+)的吸附率可达95.68%,改性菌渣吸附Pb~(2+)的过程符合Langmuir等温模型和准二级吸附动力学模型,吸附速率主要由化学吸附控制。  相似文献   

4.
建立了汉麻废弃物KMnO_4改性方法及其对水体中Pb~(2+)吸附工艺优化方案,以汉麻废弃物为切入点,通过KMnO_4预处理,制备成表面富含Mn—O基团吸附剂,达到吸附Pb~(2+)净化水体的目的。通过单因素分析确立3因素3水平正交试验方案,确定了改性汉麻废弃物对水体中Pb~(2+)吸附最佳工艺:溶液pH 4.5、吸附时间20 min、改性汉麻废弃物吸附剂投放量与Pb~(2+)离子浓度比值(A/C)25条件下,改性汉麻废弃物吸附容量最大为40.25 mg/g。KMnO_4改性汉麻废弃物Pb~(2+)吸附剂具有易制备、环保、高效等优点。  相似文献   

5.
将多孔聚苯乙烯-二乙烯基苯微球进行氯化改性,以改性后微球作为载体,引入螯合基团DTC,得到P (St-DVB)-DTC树脂。研究了P (ST-DVB)-DTC微球处理水中重金属离子,结果表明:随着溶液pH值的升高,树脂对Zn~(2+)、Pb~(2+)、Cu~(2+)金属离子的去除率均增大;当树脂投放量变化时,三种金属离子之间表现出一定的吸附竞争性,竞争吸附的能力依次为Cu~(2+)Pb~(2+) Zn~(2+)。  相似文献   

6.
以木薯淀粉为原料,微波辅助接枝丙烯酸合成了水凝胶(SAH)。采用SEM、FTIR、XPS对SAH进行了表征,考察了SAH对Pb~(2+)的吸附机理;进一步考察了微波功率、pH、吸附温度、吸附时间和Pb~(2+)的初始浓度对吸附的影响。结果表明,SAH具有三维多孔结构,主要通过与Pb~(2+)形成双配位络合物实现对Pb~(2+)的吸附。微波功率为300 W时制备的SAH,在pH为6.09、吸附时间为60 min、Pb~(2+)初始浓度为0.005 mol/L、吸附温度为30℃的条件下,吸附量可达561 mg/g。SAH可重复利用,重复使用4次后其吸附量为458 mg/g。吸附过程符合准二级动力学模型和Langmuir等温吸附模型。  相似文献   

7.
在N,N-二甲基甲酰胺中,以次磷酸钠为催化剂,采用柠檬酸对氢氧化钠处理过的玉米芯进行化学改性,制备得到生物吸附剂,并研究其对Pb~(2+)的吸附性能。通过探讨投加量、吸附时间、Pb~(2+)溶液的不同吸附温度、pH等因素研究改性玉米芯对废水Pb~(2+)吸附性能的影响。结果表明,改性的玉米芯投加质量为0.5 g、pH为7、Pb~(2+)初始质量浓度为100 mg/L时,吸附性能较好,吸附平衡时间t为120 min,最大吸附率为88.10%、最大吸附量为35.24 mg/g。可以用准二级动力学方程和Langmuir方程描述改性玉米芯的吸附过程。  相似文献   

8.
以过硫酸铵为引发剂,玉米淀粉与丙烯酸甲酯为主要原料,采用接枝共聚法制备了丙烯酸甲酯接枝玉米淀粉聚合物,并以此作为废水中重金属Pb2+的吸附剂。研究结果表明:采用正交试验法优选出制备丙烯酸甲酯接枝淀粉聚合物的最佳工艺条件是含水量为15%、反应温度为125~℃、m(单体)∶m(淀粉)=1∶5和反应时间为80 min;当吸附温度为50~℃、p H=7、接枝聚合物的投料量为2.5 g和吸附时间为45 min时,该接枝聚合物对废水中Pb~(2+)的吸附率(为67.9%)相对最大,是一种可有效处理废水中Pb~(2+)的高分子吸附剂。  相似文献   

9.
为提高活性炭对Pb~(2+)的吸附效果,用硝酸铁对活性炭进行了改性处理。采用BET、SEM、Boehm等方法对改性前后活性炭的理化特性进行了表征,考察了吸附时间、p H、吸附剂投加量对改性前后活性炭吸附Pb~(2+)效果的影响。结果表明,相比于未改性活性炭(GAC),硝酸铁改性活性炭(Fe-GAC)比表面积减少,酸性含氧官能团增加,极性增强。对于质量浓度为10 mg/L的Pb~(2+)溶液,Fe-GAC的最佳投加量为2.0 g/L,此条件下Pb~(2+)去除率可达到98.73%,比采用GAC提高了30.15%。吸附剂吸附Pb~(2+)过程与Langmuir吸附等温线方程拟合较好,相关系数R2在0.99以上。  相似文献   

10.
以煤气化灰渣为原料,采用酸改性法(HF酸)制备改性煤气化灰渣。通过静态实验研究了改性煤气化灰渣对溶液中Pb~(2+)、Cu~(2+)、Cd~(2+)的吸附特性,测定了溶液pH值、吸附时间、金属离子初始浓度对吸附的影响。结果表明,二级动力学方程很好的描述溶液中重金属离子在改性煤气化灰渣上的吸附过程;吸附等温线符合Langmuir模型,Pb~(2+)、Cu~(2+)、Cd~(2+)的静态饱和吸附量分别为112.07,40.18,31.21 mg/g。  相似文献   

11.
首先以淀粉为原料、多聚磷酸钠为酯化剂制得磷酸酯淀粉,然后采用反相乳液聚合法制备磷酸酯淀粉微球,并用马来酸酐对微球进行改性。通过单因素试验法探讨了m(淀粉)∶m(多聚磷酸钠)配比、乳化剂含量、交联剂含量和温度等因素对微球的形成和产率等影响,并对微球的结构、溶胀性和吸附性等进行了分析。结果表明:当m(淀粉+多聚磷酸钠)=10 g、m(淀粉)∶m(多聚磷酸钠)=60∶40、环氧氯丙烷(ECH)交联剂为5 g、乳化剂为0.10 g和反应时间为5.0 h时,微球产率相对最高;当Mn2+浓度为0.03 g/L时,磷酸酯淀粉微球、马来酸酐改性淀粉微球对Mn2+的常温吸附量分别为0.616、0.793 mg/g。  相似文献   

12.
改性泥炭对Pb(Ⅱ)和Cd(Ⅱ)的单一及竞争吸附研究   总被引:1,自引:0,他引:1  
以强碱改性泥炭,研究改性泥炭对Pb~(2+)、Cd~(2+)的吸附效果及竞争吸附机制。结果表明,改性泥炭对Pb~(2+)、Cd~(2+)具有显著的吸附效果,吸附容量分别由118,64 mg/g提高到225,95 mg/g;FTIR分析表明,吸附过程为Pb~(2+)、Cd~(2+)与—OH、—COO-、C—H等官能团的络合作用或者离子交换作用。当吸附时间为70 min,pH在4~8,改性泥炭添加量分别为0.8,1.6 g/L时,可达到高效与经济双层效益。竞争吸附中,Pb~(2+)、Cd~(2+)的吸附容量均低于单一离子时的吸附容量,且竞争吸附能力Pb~(2+)Cd~(2+)。  相似文献   

13.
以棉籽壳制备的生物炭为原始炭(BC),对其进行KMnO_4改性,制得改性生物炭(BC-Mn),并通过实验研究了BC-Mn对水中铅的吸附性能。结果表明:BC-Mn具有较大的比表面积和丰富的孔径结构。当初始Pb~(2+)质量浓度为300 mg/L,pH=5,吸附剂投加量为2 g/L时,吸附效果最佳,最大吸附量可达到126.79 mg/g。BC-Mn对Pb~(2+)的吸附符合Langmuir等温方程和拟二级动力学模型,且该吸附过程是可以自发进行的吸热过程。模拟废水实验结果表明,BC-Mn是一种吸附性能良好且具有实际应用价值的重金属吸附剂。  相似文献   

14.
通过对天然海泡石磁化和精氨酸表面修饰,制备了一种氨基酸修饰的磁性海泡石(L-Arg-MSEP)。采用SEM、VSM、XRD、FTIR和BET方法对其结构进行表征和分析,对比在不同pH值、吸附剂投加量、时间、温度和初始浓度条件下,海泡石及其复合改性海泡石对水中Pb~(2+)的吸附效率。结果表明,L-Arg-MSEP不仅具有超顺磁性,而且成功引入氨基,有利于提高其对Pb~(2+)的吸附性能;在30℃,溶液pH为5.0,Pb~(2+)的初始浓度为200 mg/L,吸附剂投加量为2 g/L的最佳吸附实验条件下,L-Arg-MSEP对Pb~(2+)的最大吸附量为130.59 mg/g;L-Arg-MSEP对Pb~(2+)的吸附更符合准二级动力学模型和Langmuir等温吸附模型。吸附过程为自发的放热过程。  相似文献   

15.
以天然高分子淀粉为原料,采用季铵型醚化剂、三聚磷酸钠及尿素对其多元修饰的方法,最终获得多种电荷分布的以淀粉为基础的重金属捕集剂。通过FTIR、固体核磁共振波谱、TGA、SEM及捕集效能评价研究了淀粉基捕集剂的微观结构、特性及捕集机理。结果表明:淀粉分子成功引入阳离子季铵基团、阴离子磷酸基团及非离子酰胺基团;相对于原淀粉,所获得的中间体及终产物比表面积不断增大,分子量依次增加,有利于对重金属离子进行捕集;0.06 g淀粉基捕集剂对质量浓度为30 mg/L混合溶液中Cu~(2+)、Pb~(2+)、Cd~(2+)、Ni~(2+)的去除率分别为97.93%、99.83%、99.80%、99.53%,均达到国家排放标准;其捕集吸附过程符合伪二级吸附模型,且由电性中和反应和微孔吸附联合共同控制。  相似文献   

16.
采用高锰酸钾氧化改性稻壳,制备新型的改性吸附剂,研究其对Pb~(2+)的吸附性能。结果表明:吸附Pb~(2+)的最适p H值为4~6;初始Pb~(2+)浓度在50 mg/L以下时,饱和吸附量随Pb~(2+)浓度提高而提高,最高达到28.85 mg/g。吸附等温线和动力学方程拟合分析表明锰改性稻壳对Pb~(2+)的吸附属于单层吸附,吸附过程主要受限于孔隙扩散。  相似文献   

17.
以表面含溴的丝瓜络为大分子引发剂(loofah-Br),溴化铜(Cu Br2)/五甲基二乙烯基三胺(PMDETA)/抗坏血酸(VC)为催化体系,通过电子转移活化再生催化原子转移自由基聚合(ARGET-ATRP)方法,制备了含聚甲基丙烯酸二甲氨基乙酯刷的丝瓜络接枝共聚物loofah-g-PDMAEMA;采用傅里叶红外光谱(FTIR)及热重分析(TGA)对其结构和性能进行了表征;考察了loofah-g-PDMAEMA吸附Pb~(2+)的主要影响因素和对Pb~(2+)的重复吸附性能。结果表明,loofah-g-PDMAEMA对Pb~(2+)的最佳吸附条件为:温度30℃、pH=5.5、吸附时间5 h,在该条件下最大吸附量可达107.8mg/g;吸附过程符合准二级动力学模型;经过4次重复使用后,吸附量可达首次吸附量的84.73%。  相似文献   

18.
《应用化工》2020,(1):17-21
建立了普通橘子皮、Fe(Ⅲ)负载改性橘子皮对Pb~(2+)的吸附研究,采用原子吸收光谱仪测定Pb~(2+)的浓度,分别研究了吸附剂投加量、pH、吸附时间等对废水中Pb~(2+)的吸附研究,且对吸附动力学和吸附等温线进行了分析。结果表明,Fe(Ⅲ)负载改性的橘子皮比普通橘子皮对Pb~(2+)的吸附效果更佳,最大吸附量为119.25 mg/g,吸附去除率达到95.66%,Langmuir能更好地描述普通橘子皮和Fe(Ⅲ)负载改性橘子皮吸附剂对Pb~(2+)的吸附过程,准二级动力学方程拟合结果R~2在0.999 4以上,说明吸附过程被化学吸附所控制。  相似文献   

19.
采用改进的Hummers制备氧化石墨烯,对其进行功能化改性,制得功能化氧化石墨烯f-GO,再将功能化氧化石墨烯和纤维素共混,制备了具有较强吸附性能的功能化氧化石墨烯/纤维素复合材料(f-GO/CE)。以复合材料为载体,用静态法考察了pH值、吸附时间、初始浓度等因素对f-GO/CE吸附Pb~(2+)效果的影响。结果表明,吸附最适pH为6,吸附时间是150 min,最佳初始浓度为240 mg/L;同时f-GO/CE对Pb~(2+)的吸附行为符合Langmiur方程,吸附最大量可达到105mg/g,其对铅离子具有优异的吸附性能。  相似文献   

20.
以玉米芯为吸附剂,经氢氧化钠(NaOH)和硫酸(H_2SO_4)改性得到改性吸附剂,研究改性吸附剂对镉、铬、铅吸附性能的影响。实验研究了吸附时间和吸附初始浓度对吸附效果的影响。结果表明,改性玉米芯吸附剂对Cd~(2+)、Cr~(3+)、Pb~(2+)三种重金属离子的吸附能力都增强,且对Pb~(2+)的吸附效果最好,其吸附顺序为Pb~(2+)Cr~(3+)Cd~(2+);在初始质量浓度为400 mg/L时,酸改性的玉米芯对Cd~(2+)、Cr~(3+)、Pb~(2+)吸附容量为15、26、37 mg/g,而碱改性的玉米芯对Cd~(2+)、Cr~(3+)、Pb~(2+)吸附容量分别为17、29、59 mg/g。相对酸改性,碱改性的吸附剂对Cd~(2+)、Cr~(3+)、Pb~(2+)吸附量提高了14.54%、11.22%、57.86%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号