首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels. Thus, in response to salt stress signals, plants adapt via various mechanisms, including regulating ion homeostasis, activating the osmotic stress pathway, mediating plant hormone signaling, and regulating cytoskeleton dynamics and the cell wall composition. Unraveling the mechanisms underlying these physiological and biochemical responses to salt stress could provide valuable strategies to improve agricultural crop yields. In this review, we summarize recent developments in our understanding of the regulation of plant salt stress.  相似文献   

3.
Fluctuation of external osmolarity is one of the most common types of environmental stress factors for all kind of cells, both of prokaryotic and of eukaryotic origin. Cells try to keep their volume and/or turgor pressure constant; consequently, both a decrease (hypoosmotic stress) and an increase (hyperosmotic stress) of the solute concentration (correctly: increase or decrease in water activity) in the surrounding area, respectively, are challenges for cellular metabolism and survival. A common example from the prokaryotic world is the fate of a soil bacterium that, after a sunny day has dried out the soil (hyperosmotic stress), is suddenly exposed to a drop of distilled water from a rain cloud (hypoosmotic stress). The immediate and inevitable passive response to the sudden osmotic shift in the surroundings is fast water efflux out of the cell in the former situation and water influx in the latter. In the worst case, these responses may lead to either loss of cell turgor and plasmolysis or to cell burst. In order to overcome such drastic consequences cells have developed effective mechanisms, namely osmoadaptation, to cope with the two different types of osmotic stress. For a graded reaction to osmotic shifts, cells must be able (1) to sense stimuli related to osmotic stress, (2) to transduce corresponding signals to those systems that properly respond (3) by activating transport or enzymatic functions or (4) by changing gene expression profiles. In this review, membrane proteins involved in the cell's active response to osmotic stress are described. Molecular details of structure, function, and regulation of mechanosensitive efflux channels from various organisms, as well as of osmoregulated uptake systems are discussed.  相似文献   

4.
Stress responses are of particular importance to microorganisms, because their habitats are subjected to continual changes in temperature, osmotic pressure, and nutrients availability. Stressors (and stress factors), may be of chemical, physical, or biological nature. While stress to microorganisms is frequently caused by the surrounding environment, the growth of microbial cells on its own may also result in induction of some kinds of stress such as starvation and acidity. During production of fresh-cut produce, cumulative mild processing steps are employed, to control the growth of microorganisms. Pathogens on plant surfaces are already stressed and stress may be increased during the multiple mild processing steps, potentially leading to very hardy bacteria geared towards enhanced survival. Cross-protection can occur because the overlapping stress responses enable bacteria exposed to one stress to become resistant to another stress. A number of stresses have been shown to induce cross protection, including heat, cold, acid and osmotic stress. Among other factors, adaptation to heat stress appears to provide bacterial cells with more pronounced cross protection against several other stresses. Understanding how pathogens sense and respond to mild stresses is essential in order to design safe and effective minimal processing regimes.  相似文献   

5.
Lysosomotropism is a biological characteristic of small molecules, independently present of their intrinsic pharmacological effects. Lysosomotropic compounds, in general, affect various targets, such as lipid second messengers originating from lysosomal enzymes promoting endothelial stress response in systemic inflammation; inflammatory messengers, such as IL-6; and cathepsin L-dependent viral entry into host cells. This heterogeneous group of drugs and active metabolites comprise various promising candidates with more favorable drug profiles than initially considered (hydroxy) chloroquine in prophylaxis and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections/Coronavirus disease 2019 (COVID-19) and cytokine release syndrome (CRS) triggered by bacterial or viral infections. In this hypothesis, we discuss the possible relationships among lysosomotropism, enrichment in lysosomes of pulmonary tissue, SARS-CoV-2 infection, and transition to COVID-19. Moreover, we deduce further suitable approved drugs and active metabolites based with a more favorable drug profile on rational eligibility criteria, including readily available over-the-counter (OTC) drugs. Benefits to patients already receiving lysosomotropic drugs for other pre-existing conditions underline their vital clinical relevance in the current SARS-CoV2/COVID-19 pandemic.  相似文献   

6.
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol to produce phosphatidic acid (PtdOH) and regulates the balance between two lipid second messengers: diacylglycerol and PtdOH. Several lines of evidence suggest that the η isozyme of DGK is involved in the pathogenesis of bipolar disorder. However, the detailed molecular mechanisms regulating the pathophysiological functions remain unclear. One reason is that it is difficult to detect the cellular activity of DGKη. To overcome this difficulty, we utilized protein myristoylation and a cellular PtdOH sensor, the N-terminal region of α-synuclein (α-Syn-N). Although DGKη expressed in COS-7 cells was broadly distributed in the cytoplasm, myristoylated (Myr)-AcGFP-DGKη and Myr-AcGFP-DGKη-KD (inactive (kinase-dead) mutant) were substantially localized in the plasma membrane. Moreover, DsRed monomer-α-Syn-N significantly colocalized with Myr-AcGFP-DGKη but not Myr-AcGFP-DGKη-KD at the plasma membrane. When COS-7 cells were osmotically shocked, all DGKη constructs were exclusively translocated to osmotic shock-responsive granules (OSRG). DsRed monomer-α-Syn-N markedly colocalized with only Myr-AcGFP-DGKη at OSRG and exhibited a higher signal/background ratio (3.4) than Myr-AcGFP-DGKη at the plasma membrane in unstimulated COS-7 cells (2.5), indicating that α-Syn-N more effectively detects Myr-AcGFP-DGKη activity in OSRG. Therefore, these results demonstrated that the combination of myristoylation and the PtdOH sensor effectively detects DGKη activity in cells and that this method is convenient to examine the molecular functions of DGKη. Moreover, this method will be useful for the development of drugs targeting DGKη. Furthermore, the combination of myristoylation (intensive accumulation in membranes) and α-Syn-N can be applicable to assays for various cytosolic PtdOH-generating enzymes.  相似文献   

7.
Lipopolysaccharides (LPSs) are major components of the cell surface of Gram-negative bacteria. LPSs comprise a hydrophilic heteropolysaccharide (formed by the core oligosaccharide and the O-specific polysaccharide) that is covalently linked to the glycolipid moiety lipid A, which anchors these macromolecules to the external membrane. LPSs are one of a group of molecules called pathogen-associated molecular patterns (PAMPs) that are indispensable for bacterial growth and viability, and act to trigger innate defense responses in eukaryotes. We have previously shown that LPS from the plant pathogen Xanthomonas campestris pv. campestris (Xcc) can elicit defense responses in the model plant Arabidopsis thaliana. Here we have extended these studies by analysis of the structure and biological activity of LPS from a nonpathogenic Xcc mutant, strain 8530. We show that this Xcc strain is defective in core completion and introduces significant modification in the lipid A region, which involves the degree of acylation and nonstoichiometric substitution of the phosphate groups with phosphoethanolamine. Lipid A that was isolated from Xcc strain 8530 did not have the ability to induce the defense-related gene PR1 in Arabidopsis, or to prevent the hypersensitive response (HR) that is caused by avirulent bacteria as the lipid A from the wild-type could. This suggests that Xcc has the capacity to modify the structure of the lipid A to reduce its activity as a PAMP. We speculate that such effects might occur in wild-type bacteria that are exposed to stresses such as those that might be encountered during plant colonization and disease.  相似文献   

8.
9.
Exosomes and microvesicles are two classes of submicroscopic vesicle released by cells into the extracellular space. Collectively referred to as extracellular vesicles, these membrane containers facilitate important cell–cell communication by carrying a diverse array of signaling molecules, including nucleic acids, proteins, and lipids. Recently, the role of extracellular vesicle signaling in cancer progression has become a topic of significant interest. Methods to detect and target exosomes and microvesicles are needed to realize applications of extracellular vesicles as biomarkers and, perhaps, therapeutic targets. Detection of exosomes and microvesicles is a complex problem as they are both submicroscopic and of heterogeneous cellular origins. In this Minireview, we highlight the basic biology of extracellular vesicles, and address available biochemical and biophysical detection methods. Detectible characteristics described here include lipid and protein composition, and physical properties such as the vesicle membrane shape and diffusion coefficient. In particular, we propose that detection of exosome and microvesicle membrane curvature with lipid chemical probes that sense membrane shape is a distinctly promising method for identifying and targeting these vesicles.  相似文献   

10.
11.
The membrane transport system is built on the proper functioning of the endoplasmic reticulum (ER). The accumulation of unfolded proteins in the ER lumen (ER stress) disrupts ER homeostasis and disturbs the transport system. In response to ER stress, eukaryotic cells activate intracellular signaling (named the unfolded protein response, UPR), which contributes to the quality control of secretory proteins. On the other hand, the deleterious effects of UPR on plant health and growth characteristics have frequently been overlooked, due to limited information on this mechanism. However, recent studies have shed light on the molecular mechanism of plant UPR, and a number of its unique characteristics have been elucidated. This study briefly reviews the progress of understanding what is happening in plants under ER stress conditions.  相似文献   

12.
神经酰胺及其分析与分离技术研究进展   总被引:7,自引:0,他引:7  
谢建平  张敏莲  刘铮 《精细化工》2002,19(7):381-384,387
神经酰胺是一种重要的生物活性物质 ,在医药、保健和化妆品行业具有广阔的应用前景。高效分析方法是深入研究神经酰胺性质的基础 ,分离技术的研究则是其广泛应用的前提。本文综述了神经酰胺的分析与分离技术的现有研究成果 ,并对进一步研究的方向进行了讨论  相似文献   

13.
Mammalian metallothionein-2A (MT2A) has received considerable attention in recent years due to its crucial pathophysiological role in anti-oxidant, anti-apoptosis, detoxification and anti-inflammation. For many years, most studies evaluating the effects of MT2A have focused on reactive oxygen species (ROS), as second messengers that lead to oxidative stress injury of cells and tissues. Recent studies have highlighted that oxidative stress could activate mitogen-activated protein kinases (MAPKs), and MT2A, as a mediator of MAPKs, to regulate the pathogenesis of various diseases. However, the molecule mechanism of MT2A remains elusive. A deeper understanding of the functional, biochemical and molecular characteristics of MT2A would be identified, in order to bring new opportunities for oxidative stress therapy.  相似文献   

14.
15.
16.
铅、镉和锌污染对芦苇幼苗氧化胁迫和抗氧化能力的影响   总被引:31,自引:0,他引:31  
对Pb, Cd和Zn胁迫下芦苇幼苗叶片和根内超氧阴离子自由基(O2-)和过氧化产物丙二醛(MDA)的含量、电解质渗漏以及超氧化物岐化酶(SOD)和过氧化物酶(POD)活性进行了研究. 结果表明,受3种重金属的影响,叶片和根内O2- 积累,MDA含量增加,伴随着电解质渗漏增大,显示发生了膜脂过氧化,细胞膜系统遭到破坏;作为植物抗氧化系统中的关键酶,SOD和POD活性高于对照,说明在重金属胁迫下芦苇幼苗体内的抗氧化能力增强. 可见,在重金属污染下细胞内O2- 浓度升高带来的膜脂过氧化增强是重金属伤害植物的主要原因;而保护酶系统SOD和POD活性的升高则可能是芦苇抗过氧化的机理之一.  相似文献   

17.
beta-Sheet antimicrobial peptides and alpha-helical channel-forming colicins are bactericidal molecules that target the lipid membranes of sensitive cells. Understanding the mechanisms of action of these proteins requires knowledge of their three-dimensional structure in the lipid bilayer. Solid-state NMR has been used to determine the conformation, orientation, depth of insertion, oligomerization, mobility, and lipid interaction of these membrane peptides and proteins. We review the NMR methods developed and applied to study the structure and dynamics of these antibiotic membrane proteins. These studies shed light on how these peptides disrupt lipid membranes and provide fundamental insights into the folding of beta-sheet and alpha-helical membrane proteins.  相似文献   

18.
In nature, plants are exposed to an ever-changing environment with increasing frequencies of multiple abiotic stresses. These abiotic stresses act either in combination or sequentially, thereby driving vegetation dynamics and limiting plant growth and productivity worldwide. Plants’ responses against these combined and sequential stresses clearly differ from that triggered by an individual stress. Until now, experimental studies were mainly focused on plant responses to individual stress, but have overlooked the complex stress response generated in plants against combined or sequential abiotic stresses, as well as their interaction with each other. However, recent studies have demonstrated that the combined and sequential abiotic stresses overlap with respect to the central nodes of their interacting signaling pathways, and their impact cannot be modelled by swimming in an individual extreme event. Taken together, deciphering the regulatory networks operative between various abiotic stresses in agronomically important crops will contribute towards designing strategies for the development of plants with tolerance to multiple stress combinations. This review provides a brief overview of the recent developments in the interactive effects of combined and sequentially occurring stresses on crop plants. We believe that this study may improve our understanding of the molecular and physiological mechanisms in untangling the combined stress tolerance in plants, and may also provide a promising venue for agronomists, physiologists, as well as molecular biologists.  相似文献   

19.
Cell-penetrating peptides (CPPs) have become widely used vectors for the cellular import of molecules in basic and applied biomedical research. Despite the broad acceptance of these molecules as molecular carriers, the details of the mode of cellular internalization and membrane permeation remain elusive. Within the last two years endocytosis has been demonstrated to be a route of uptake shared by several CPPs. These findings had a significant impact on CPP research. State-of-the-art cell biology is now required to advance the understanding of the intracellular fate of the CPP and cargo molecules. Owing to their presumed ability to cross lipid bilayers, CPPs also represent highly interesting objects of biophysical research. Numerous studies have investigated structure-activity relationships of CPPs with respect to their ability to bind to a lipid bilayer or to cross this barrier. Endocytosis route only relocates the membrane permeation from the cell surface to endocytic compartments. Therefore, biophysical experiments are key to a mechanistic molecular understanding of the cellular uptake of CPPs. However, biophysical investigations have to consider the molecular environment encountered by a peptide inside and outside a cell. In this contribution we will review biophysical and cell-biology data obtained for several prominent CPPs. Furthermore, we will summarize recent findings on the cell-penetrating characteristics of antimicrobial peptides and the antimicrobial properties of CPPs. Peptides of both groups have overlapping characteristics. Therefore, both fields may greatly benefit from each other. The review will conclude with a perspective of how biophysics and cell biology may synergize even more efficiently in the future.  相似文献   

20.
Abiotic stressors, such as drought, heavy metals, and high salinity, are causing huge crop losses worldwide. These abiotic stressors are expected to become more extreme, less predictable, and more widespread in the near future. With the rapidly growing human population and changing global climate conditions, it is critical to prevent global crop losses to meet the increasing demand for food and other crop products. The reactive gaseous signaling molecule nitric oxide (NO) is involved in numerous plant developmental processes as well as plant responses to various abiotic stresses through its interactions with various molecules. Together, these interactions lead to the homeostasis of reactive oxygen species (ROS), proline and glutathione biosynthesis, post-translational modifications such as S-nitrosylation, and modulation of gene and protein expression. Exogenous application of various NO donors positively mitigates the negative effects of various abiotic stressors. In view of the multidimensional role of this signaling molecule, research over the past decade has investigated its potential in alleviating the deleterious effects of various abiotic stressors, particularly in ROS homeostasis. In this review, we highlight the recent molecular and physiological advances that provide insights into the functional role of NO in mediating various abiotic stress responses in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号