首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work provides kinetic and transport parameters of Li-ion during its extraction/insertion into thin film LiNi0.5Mn1.5O4 free of binder and conductive additive. Thin films of LiNi0.5Mn1.5O4 (0.2 μm thick) were prepared on electronically conductive gold substrate utilizing the electrostatic spray deposition technique. High purity LiNi0.5Mn1.5O4 thin film electrodes were observed with cyclic voltammetry, to exhibit very sharp peaks, high reversibility, and absence of the 4 V signal related to the Mn3+/Mn4+ redox couple. The electrode subjected to 100 CV cycles of charge/discharge delivered a capacity of 155 mAh g−1 on the first cycle and sustained a good cycling behavior while retaining 91% of the initial capacity after 50 cycles. Kinetics and mass-transport of Li-ion extraction at LiNi0.5Mn1.5O4 thin film electrode were investigated by means of electrochemical impedance spectroscopy. The apparent chemical diffusion coefficient (Dapp) value determined from EIS measurements changed depending on the electrode potential in the range of 10−10-10−12 cm2 s−1. The Dapp profile shows two minimums at the potential values close to the peak potentials of the corresponding cyclic voltammogram.  相似文献   

2.
Spinel LiNi0.5Mn1.5O4 materials are synthesized by one-step precipitation method. Ammonium carbonate is used as the precipitating agent to obtain a more precise feed ratio without recourse to traditional washing. After annealing at high temperature, the spherical particles become angular and show high levels of crystallinity. The synthesized samples are evaluated using powder X-ray diffraction, scanning electron microscopy, and electrochemical testing. The samples synthesized with different metal ion concentrations yield different morphologies and rate performances. The sample synthesized with 0.2 mol L−1 gives the most uniform particle distribution and the best electrochemical performance. The specific discharge capacity values of the sample at 10 and 15 C are as high as 109.5 and 88.7 mAh g−1, respectively. After the high-rate cycling, its discharge capacity at 0.2 C can be reverted to 97.67% of its initial capacity.  相似文献   

3.
A simple and effective method, ethylene glycol-assisted co-precipitation method, has been employed to synthesize LiNi0.5Mn1.5O4 spinel. As a chelating agent, ethylene glycol can realize the homogenous distributions of metal ions at the atomic scale and prevent the growth of LiNi0.5Mn1.5O4 particles. XRD reveals that the prepared material is a pure-phase cubic spinel structure (Fd3m) without any impurities. SEM images show that it has an agglomerate structure with the primary particle size of less than 100 nm. Electrochemical tests demonstrate that the as-prepared LiNi0.5Mn1.5O4 possesses high capacity and excellent rate capability. At 0.1 C rate, it shows a discharge capacity of 137 mAh g−1 which is about 93.4% of the theoretical capacity (146.7 mAh g−1). At the high rate of 5 C, it can still deliver a discharge capacity of 117 mAh g−1 with excellent capacity retention rate of more than 95% after 50 cycles. These results show that the as-prepared LiNi0.5Mn1.5O4 is a promising cathode material for high power Li-ion batteries.  相似文献   

4.
In this study, we have successfully coated the CeO2 nanoparticles (CeONPs) layer onto the surface of the Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials by a wet chemical method, which can effectively improve the structural stability of electrode. The X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) are used to determine the structure, morphology, elemental composition and electronic state of pristine and surface modified LiNi0.7Co0.2Mn0.1O2. The electrochemical testing indicates that the 0.3?mol% CeO2-coated LiNi0.7Co0.2Mn0.1O2 demonstrates excellent cycling capability and rate performance, the discharge specific capacity is 161.7?mA?h?g?1 with the capacity retention of 86.42% after 100 cycles at a current rate of 0.5?C, compared to 135.7?mA?h?g?1 and 70.64% for bare LiNi0.7Co0.2Mn0.1O2, respectively. Even at 5?C, the discharge specific capacity is still up to 137.1?mA?h?g?1 with the capacity retention of 69.0%, while the NCM only delivers 95.5?mA?h?g?1 with the capacity retention of 46.6%. The outstanding electrochemical performance is assigned to the excellent oxidation capacity of CeO2 which can oxidize Ni2+ to Ni3+ and Mn3+ to Mn4+ with the result that suppress the occurrence of Li+/Ni2+ mixing and phase transmission. Furthermore, CeO2 coating layer can protect the structure to avoid the occurrence of side reaction. The CeO2-coated composite with enhanced structural stability, cycling capability and rate performance is a promising cathode material candidate for lithium-ion battery.  相似文献   

5.
H.Y. Xu 《Electrochimica acta》2006,51(21):4352-4357
LiNi0.5Mn1.5O4 as a 4.7 V-class cathode material was prepared through the radiated polymer gel method that allowed homogeneous mixing of starting materials at the atomic scale. After calcinations of the polymer gels containing the metal salts at different temperatures from 750 to 1150 °C, powders of a pure LiNi0.5Mn1.5O4 phase were obtained. X-ray diffraction and transmission electron microscopy were used to characterize the structures of the powders. Galvanostatic cell cycling and a simultaneous DC resistance measurement were performed on Li/LiNi0.5Mn1.5O4 cells. It is found that the powder calcined at 950 °C shows the best electrochemical performance with the initial discharge capacity of 139 mAh g−1 and 96% retention after 50 cycles. Adopting a slow cooling procedure for the powder calcination can increase the capacity of LiNi0.5Mn1.5O4 at the 4.7 V plateau. Besides, a “w”-shape change of the DC resistance of Li/LiNi0.5Mn1.5O4 cells is a good indication of the structural change of LiNi0.5Mn1.5O4 electrode during charge and discharge courses.  相似文献   

6.
Layered LiNi0.6Co0.2Mn0.2O2 materials were synthesized at different sintering temperatures using spray-drying precursor with molar ratio of Li/Me = 1.04 (Me = transition metals). The influences of sintering temperature on crystal structure, morphology and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and charge-discharge test. As a result, material synthesized at 850 °C has excellent electrochemical performance, delivering an initial discharge capacity of 173.1 mAh g− 1 between 2.8 and 4.3 V at a current density of 16 mA g− 1 and exhibiting good cycling performance.  相似文献   

7.
LiNi0.33−xMn0.33Co0.33YxO2 materials are synthesized by Y3+ substitute of Ni2+ to improve the cycling performance and rate capability. The influence of the Y3+ doping on the structure and electrochemical properties are investigated by means of X-ray diffraction (XRD), scanning electron microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and galvanostatic charge/discharge tests. LiNi0.33Mn0.33Co0.33O2 exhibits the capacity retentions of 89.9 and 87.8% at 2.0 and 4.0 C after 40 cycles, respectively. After doping, the capacity retentions of LiNi0.305Mn0.33Co0.33Y0.025O2 are increased to 97.2 and 95.9% at 2.0 and 4.0 C, respectively. The discharge capacity of LiNi0.305Mn0.33Co0.33Y0.025O2 at 5.0 C remains 75.7% of the discharge capacity at 0.2 C, while that of LiNi0.33Mn0.33Co0.33O2 is only 47.5%. EIS measurement indicates that LiNi0.305Mn0.33Co0.33Y0.025O2 electrode has the lower impedance value during cycling. It is considered that the higher capacity retention and superior rate capability of Y-doped samples can be ascribed to the reduced surface film resistance and charge transfer resistance of the electrode during cycling.  相似文献   

8.
A nanostructured ternary transition metal oxide, ZnFe2O4, is synthesized via the simple polymer pyrolysis method. The characteristics of the material are examined by thermogravimetry, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The electrochemical test results show that this method of ZnFe2O4 synthesis produces high specific capacities and good cycling performance, with an initial specific capacity as high as 1419.6 mAh g−1 at first discharge that is maintained at over 800 mAh g−1 even after 50 charge–discharge cycles. The electrode also presents a good rate capability, with a high rate of 4C (1C = 928 mA g−1), a reversible specific capacity that can be as high as 400 mAh g−1. ZnFe2O4 is a potential alternative to high-performance nanostructured anode material in lithium ion batteries.  相似文献   

9.
To enhance specific capacity, cycle performance and rate-capability of lithium-ion battery cathode materials, the Li[Co0.1Ni0.15Li0.2Mn0.55]O2 (LCMNO) is modified by coating them with amorphous carbons and by preparing nanocomposites with nanostructured carbons (carbon nanotube and graphene). The carbon-treated LCMNO powders and their cathodes are characterized by morphological observation, crystalline property analysis, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The LCMNO nanocomposite shows a superior discharge capacity of ca. 290 mAh g−1 at low C-rates, due to a greater number of active sites embedded by nanostructured carbon species. In contrast, the carbon-coated LCMNO shows higher discharge capacity in high rate regions due to the carbon-coated layer in the carbon-coated LCMNO, suppressing the side reactions and enhancing the electrical conductivity.  相似文献   

10.
We report here a polymer-templated hydrothermal growth method and subsequent calcination to achieve carbon coated hollow CuFe2O4 spheres (H–CuFe2O4@C). This material, when used as anode for Li-ion battery, retains a high specific capacity of 550 mAh g−1 even after the 70th cycle, which is much higher than those of both CuFe2O4@C (∼300 mAh g−1) and H–CuFe2O4 (∼120 mAh g−1). And galvanostatic cycling at different current densities reveals that a capacity of 480 mAh g−1, 91% recovery of the specific capacity cycling at 100 mA g−1, can be obtained even after 50 cycles running from 100 to 1600 mA g−1. The significantly enhanced electrochemical performances of H–CuFe2O4@C with regard to Li-ion storage are ascribed to the following factors: (1) the hollow void, which could mitigate the pulverization of electrode and facilitate the lithium-ion, electron and electrolyte transport; (2) the conductive carbon coating, which could enhance the conductivity, alleviate the agglomeration problem, prevent the formation of an overly thick SEI film and buffer the electrode. Such a structural motif of H–CuFe2O4@C is promising, for electrode materials of LIBs, and points out a general strategy for creating other hollow-shell electrode materials with improved electrochemical performances.  相似文献   

11.
Core–shell structure carbon coating Fe3O4 nanoparticles are prepared by a two-step method. The crystalline structure and the electrochemical performance of the prepared samples are investigated. The results indicate that a uniform and continuous carbon layer is formed on the surface of Fe3O4 nanoparticles. The core–shell structure Fe3O4/C nanoparticles show a high initial discharge capacity of 1546 mAh g−1 and a specific stable discharge capacity of about 800 mAh g−1 at 0.5 C with no noticeable capacity fading up to 100 cycles.  相似文献   

12.
In this study, the LiCoO2/LiNi1/3Mn1/3Co1/3O2 mixed cathode electrodes were prepared and their electrochemical performances were measured in a high cut-off voltage. As the contents of LiNi1/3Mn1/3Co1/3O2 in the mixed cathode increases, the reversible specific capacity and cycleability of the electrode enhanced, but the rate capability deteriorated. On the contrary, the rate capability of the cathode enhanced but the reversible specific capacity and cycleability deteriorated, according to increasing the contents of LiCoO2 in the mixed cathode. The cell of LiCoO2/LiNi1/3Mn1/3Co1/3O2 (50:50, wt.%) mixed cathode delivers a discharge capacity of ca. 168 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca. 152 mAh/g was obtained at a 2.0 C rate. However, the cell shows very stable cycleability: the discharge capacity of the cell after 20th charge/discharge cycling maintains ca. 163 mAh/g.  相似文献   

13.
A series of LiNi1/3Co1/3Mn1/3O2/polytriphenylamine composites were successfully synthesized by ultrasound dispersion method. LiNi1/3Co1/3Mn1/3O2/polytriphenylamine (5.0?wt%) composite with small and homogeneous particle size exhibited excellent electrochemical performance, which delivered an initial discharge capacity of 223.7?mAh g?1 with a capacity retention of 84.39% after 100 cycles in the voltage range of 2.5–4.5?V and at a current density of 0.2C. Moreover, an excellent specific discharge capacity of 127.3?mAh g?1 at a current density 5C indicates a superior rate performance of the LiNi1/3Co1/3Mn1/3O2/polytriphenylamine (5.0?wt%) composite. The good electrochemical performances of the composite can be attributed to the introduction of polytriphenylamine, which increased electrical conductivity, decreased charge transfer resistance and increased Li+ ion diffusion ability. These noteworthy results demonstrated that LiNi1/3Co1/3Mn1/3O2/polytriphenylamine composites might be potential cathode materials for lithium ion batteries.  相似文献   

14.
Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as a cathode material for Li-ion battery has been successfully prepared by co-precipitation (CP), sol–gel (SG) and sucrose combustion (SC) methods. The prepared materials were characterized by XRD, SEM, BET and electrochemical measurements. The XRD result shows that the Li[Li0.2Mn0.54Ni0.13Co0.13]O2 materials prepared by different methods all form a pure phase with good crystallinity. SEM images and BET data present that the SC-material exhibited the smallest particle size (ca. 0.1 μm) and the highest surface area (7.4635 m2 g−1). The tap density of SC-material is lower than that of CP- and SG-materials. The result of rate performance tests indicates that the SC-material showed the best rate capability with the highest discharge capacity of 178 mAh g−1 at 5.0 C, followed by SG-material and then CP-material. However, the cycling stability of SC-material tested at 0.1 and 0.5 C is relatively poor as compared to that of SG-material and CP-material. The result of EIS measurements reveals that large surface area and small particle size of the SC-electrode result in more SEI layer formation because of the increased side reactions with the electrolyte during cycling, which deteriorates the electrode/electrolyte interface and thus leads to the faster capacity fading of the SC-material.  相似文献   

15.
ZnO was coated on LiNi0.5Co0.25Mn0.25O2 cathode (positive electrode) material for lithium ion battery via sol–gel method to improve the performance of LiNi0.5Co0.25Mn0.25O2. The X-ray diffraction (XRD) results indicated that the lattice structure of LiNi0.5Co0.25Mn0.25O2 was not changed distinctly after surface coating and part of Zn2+ might dope into the lattice of the material. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) proved that ZnO existed on the surface of LiNi0.5Co0.25Mn0.25O2. Charge and discharge tests showed that the cycle performance and rate capability were improved by ZnO coating, however, the initial capacity decreased dramatically with increasing the amount of ZnO. Differential scanning calorimetry (DSC) results showed that thermal stability of the materials was improved. The XPS spectra after charge–discharge cycles showed that ZnO coated on LiNi0.5Co0.25Mn0.25O2 promoted the decomposition of the electrolyte at the early stage of charge–discharge cycle to form more stable SEI layer, and it also can scavenge the free acidic HF species from the electrolyte. The electrochemical impedance spectroscopy (EIS) results showed ZnO coating could suppress the augment of charge transfer resistance upon cycling.  相似文献   

16.
Despite Nickel-rich materials have all the advantages of high capacity, long cycle life and low cost, there is still a disadvantage that the capacity decreases rapidly as the number of cycles increases. In order to solve this problem, WO3 was uniformly coated on the surface of LiNi0.6Co0.2Mn0.2O2 cathode materials by wet coating, and its cycling performance was greatly improved with the higher capacity. The coated materials were analyzed by X-ray diffraction(XRD), Scanning electron microscope (SEM), high resolution Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy(XPS). The results showed that the coating thickness was around 3.15?nm, and some tungsten ions were doped into the lattice of the near surface area of the LiNi0.6Co0.2Mn0.2O2 material. In addition, the results of charge-discharge test showed that 1?wt%WO3 coating LiNi0.6Co0.2Mn0.2O2 had the best performance, and delivered a discharge capacity of 140 mAh g?1 (the capacity retention rate is 84.8%) in the potential interval of 2.8–4.3?V at 1?C (1?C?=?165?mA?g?1) after 200 cycles, while the bare cathode material only delivered a discharge capacity of 120 mAhg?1 (the capacity retention rate is 75%). The phenomenon indicates that the WO3 coating plays a role in inhibiting the harmful side reactions between the cathode material and the electrolyte, improving the electrochemical and structure stability of LiNi0.6Co0.2Mn0.2O2 cathode materials.  相似文献   

17.
A simple one-step route using gas template method is applied to synthesize macroporous LiNi0.5Mn0.5O2 which is characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Telle (BET) surface area, charge–discharge tests and electrochemical impedance spectroscopy (EIS) measurements. The as-synthesized material shows pure crystalline phase of LiNi0.5Mn0.5O2, while the microstructure is comprised of macrospores ranging from 0.2 to 0.5 μm. The first discharge capacity is of 174 mAh g−1 at 0.1 C rate, which is much higher than that of the material synthesized by the conventional solid state reaction method. Furthermore, the macroporous LiNi0.5Mn0.5O2 material shows remarkable rate capacity and cycle stability, which may be attributed to the shorter lithium ion diffusion distance and better electrolyte penetration.  相似文献   

18.
X. Fang 《Electrochimica acta》2010,55(3):832-10227
Nano- and micro-sized LiNi0.5Mn1.5O4 particles are prepared via the thermal decomposition of a ternary eutectic Li-Ni-Mn acetate. Lithium acetate, nickel acetate and manganese acetate can form a ternary eutectic Li-Ni-Mn acetate below 80 °C. After further calcination, nano-sized LiNi0.5Mn1.5O4 particles can be obtained at an extremely low temperature (500 °C). When the sintering temperature goes above 700 °C, the particle size increases, and at 900 °C micro-sized LiNi0.5Mn1.5O4 particles (with a diameter of about 4 μm) are obtained. Electrochemical tests show that the micro-sized LiNi0.5Mn1.5O4 powders (sintered at 900 °C) exhibit the best capacity retention at 25 °C, and after 100 cycles, 97% of initial discharge capacity can still be reached. Nano-sized LiNi0.5Mn1.5O4 powders (sintered at 700 °C) perform the best at low temperatures; when cycled at −10 °C and charged and discharged at a rate of 1 C, nano-sized LiNi0.5Mn1.5O4 powders can deliver a capacity as high as 110 mAh g−1.  相似文献   

19.
LiNi1/3Co1/3Mn1/3O2 and LiCoO2 cathode materials were synthesized by using a supercritical water (SCW) method with a metal salt solution in a batch reactor. Stoichiometric LiNi1/3Co1/3Mn1/3O2 was successfully synthesized in a 10-min reaction without calcination, while overlithiated LiCoO2 (Li1.15CoO2) was synthesized using the batch SCW method. The physical properties and electrochemical performances of LiNi1/3Co1/3Mn1/3O2 were compared to those of Li1.15CoO2 by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge/discharge cycling tests. The XRD pattern of LiNi1/3Co1/3Mn1/3O2 was found to be similar to that of Li1.15CoO2, showing clear splitting of the (0 0 6)/(1 0 2) and (1 0 8)/(1 1 0) peak pairs as particular characteristics of the layered structure. In addition, both cathode powders showed good crystallinity and phase purity, even though a short reaction time without calcination was applied to the SCW method. The initial specific discharge capacities of the Li1.15CoO2 and LiNi1/3Co1/3Mn1/3O2 powders at a current density of 0.24 mA/cm2 in 2.5-4.5 V were 149 and 180 mAh/g, and their irreversible capacity loss was 20 and 17 mAh/g, respectively. The discharge capacities of the Li1.15CoO2 and LiNi1/3Co1/3Mn1/3O2 powders decreased with cycling and remained at 108 and 154 mAh/g after 30 cycles, which are 79% and 89% of the initial capacities. Compared to the overlithiated LiCoO2 cathode powders, the LiNi1/3Co1/3Mn1/3O2 cathode powders synthesized by SCW method had better electrochemical performances.  相似文献   

20.
LiNi0.5Mn1.5O4 powder was synthesized via sol-gel method and coated with ZnO in order to test the electrochemical cyclability of the material as a cathode for the secondary Li battery in the 5 V range at 55 °C. The ZnO-coated LiNi0.5Mn1.5O4 powder nearly maintained its initial capacity of 137 mA h g−1 after 50 cycles whereas the uncoated powder was able to retain no more than 10% of the initial capacity after 30 cycles. TEM analysis of the cycled cathodes suggests that the formation of the graphitic surface phase, hindering the Li migration, may be responsible for the rapid capacity loss of the uncoated material while no such phase was observed on the surface of the ZnO coated LiNi0.5Mn1.5O4 powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号