首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The focus of this work is to investigate whether a previously developed microkinetic deactivation model for hydrothermally treated Fe‐BEA as NH3‐SCR catalyst can be applied to describe chemical deactivation of Fe‐BEA due to phosphorous exposure. The model describes the experiments well for Fe‐BEA before and after phosphorous exposure by decreasing the site density, representing deactivation of sites due to formation of metaphosphates blocking the active iron sites, while the kinetic parameters are kept constant. Furthermore, the results show that the activity for low‐temperature selective catalytic reduction (SCR) is very sensitive to loss of active monomeric iron species due to phosphorous poisoning compared to high‐temperature SCR. Finally, the ammonia inhibition simulations show that exposure to phosphorous may affect the internal transport of ammonia between ammonia storage sites buffering the active iron sites, which results in a lower SCR performance during transient conditions. © 2014 American Institute of Chemical Engineers AIChE J, 61: 215–223, 2015  相似文献   

2.
An overview is given of the selective catalytic reduction of NOx by ammonia (NH3‐SCR) over metal‐exchanged zeolites. The review gives a comprehensive overview of NH3‐SCR chemistry, including undesired side‐reactions and aspects of the reaction mechanism over zeolites and the active sites involved. The review attempts to correlate catalyst activity and stability with the preparation method, the exchange metal, the exchange degree, and the zeolite topology. A comparison of Fe‐ZSM‐5 catalysts prepared by different methods and research groups shows that the preparation method is not a decisive factor in determining catalytic activity. It seems that decreased turnover frequency (TOF) is an oft‐neglected effect of increasing Fe content, and this oversight may have led to the mistaken conclusion that certain production methods produce highly active catalysts. The available data indicate that both isolated and bridged iron species participate in the NH3‐SCR reaction over Fe‐ZSM‐5, with isolated species being the most active.  相似文献   

3.
Composite materials containing Raney Ni and Cu‐ZSM‐5 are highly active catalysts for the selective catalytic reduction (SCR) of NO by NH3. Their catalytic properties were studied with particular attention to the influence of moisture and SO2 in the feed, and to effects of catalyst shaping operations. Composite materials (16–20 wt‐% zeolite) were prepared by mixing the components, with different degree of segregation in the resulting pressed particles, or by growing ZSM‐5 crystallites on the surface of leached Raney Ni, which were then exchanged with Cu ions. Catalytic tests were performed with 1000 ppm NO, 1000 ppm NH3, 2 % O2 in He, at 3–6.5 · 105 h–1 (related to zeolite component). With physical mixtures, the catalytic behaviour strongly depended on the mixing strategy, particles containing both Ni and zeolite being inferior to mixed Ni‐only and zeolite‐only particles. The SCR activity was promoted by 2 % H2O in the feed, SO2 (200 ppm) was a moderate poison at low temperatures, but indifferent or slightly promoting at high temperatures. A catalyst prepared from ZSM‐5 grown on Raney Ni, which was ranked intermediate in dry feed, was promoted to excellent performance in H2O and SO2 containing feed at T > 700 K and was stable for 38 h at 845 K. The results suggest that SCR catalysts containing highly active zeolites should be produced avoiding shaping operations e.g. by use of zeolite crystallites grown on wire packings.  相似文献   

4.
The embodiment of the NOx selective catalytic reduction (SCR) functionality in a diesel particulate filter (DPF), so‐called SCR‐on‐Filter (SCRoF), is investigated through numerical modeling with SCR kinetics corresponding to Cu‐Chabazite and Fe‐ZSM5 catalysts. The results of the simulations of the SCR activity, performed in the absence and presence of soot, indicate that the presence of soot negligibly affects the NOx conversion efficiency, given the slow dynamics of passive regeneration. Conversely, the reduction in cake thickness by soot passive oxidation is significantly different in the absence of SCR activity (uncatalyzed DPF) compared to that in its presence (SCRoF). In fact, in the SCRoF only 60–80% of the original soot consumption obtained in the absence of SCR reaction over 1 h can be achieved. Individual Cu‐Chabazite and Fe‐ZSM5 catalysts, as well as in‐series layers of the two catalysts, are investigated to devise the widest temperature window for SCRoF. © 2016 American Institute of Chemical Engineers AIChE J, 63: 238–248, 2017  相似文献   

5.
Current state‐of‐the‐art NH3‐SCR technology based on vanadium catalysts suffers problems associated with NH3 slip and poisoning of the catalyst and blockage of heat recovery steam generators (HRSG). If environmentally‐friendly catalysts capable of efficient operation at lower temperatures could be developed that used a reductant other than NH3, the issues with current state‐of‐the‐art SCR could be significantly lessened. Hence, in this study, activated carbon (AC) supported copper oxide‐based catalysts for SCR while using C2H4 as a reductant was discussed. Reaction testing of catalysts demonstrated high initial NO conversion with steeply declining activity over 2 h of testing when C2H4 was used as the reductant; in comparison, with the same catalyst and NH3 as the reductant, stable, long‐term NO conversion was achieved, but at a lower rate than the initial reactivity with C2H4. As a consequence, catalyst characterization studies were performed to assess deactivation mechanisms when C2H4 was the reductant. These studies included x‐ray diffraction, BET surface area and porosity, temperature programmed reduction, scanning electron microscopy, Raman spectroscopy and x‐ray photoelectron spectroscopy of both fresh and deactivated catalysts. The analytical results showed the surface area and porosity of the catalyst remained unchanged and the initially highly‐dispersed Cu species became agglomerated and more crystalline during reaction testing. Furthermore, carbon black was also detected on the catalyst surface after testing, presumably formed during the decomposition of C2H4. Both agglomeration of the active Cu species and blockage by carbon deposits would decrease the availability of active sites and lead to decreased catalytic activity.  相似文献   

6.
The Fe‐Mo/ZSM‐5 catalysts were prepared by an impregnation method. A comparison of the catalytic activity for the reduction of NOx with ammonia over Fe‐Mo/ZSM‐5, Fe‐ZSM‐5 and Mo/ZSM‐5 catalysts was carried out. Also, the effects of the conditions used for calcination as well as of the Fe/Mo ratio on the catalytic performance of Fe‐Mo/ZSM‐5 catalysts were studied. It was found that Fe‐Mo/ZSM‐5 is more active than Fe‐ZSM‐5 and Mo/ZSM‐5 separately. Fe‐Mo/ZSM‐5 exhibited the best performance for SCR reaction with a Fe/Mo ratio of 1.5 and yielded the highest NOx conversion of 96 % at a temperature of 430 °C. The results also showed that the performance of Fe‐Mo/ZSM‐5 is sensitive to the conditions used during calcination. The bulk phase and surface composition of the Fe‐Mo/ZSM‐5 catalysts were determined by XRD, BET, and XPS techniques, respectively. The results revealed that the surface Mo percentage is the largest when the Fe/Mo ratio is 1.5, which may be related to its higher activity for catalytic reduction of NOx. XRD results indicate that the best catalytic performance of the Fe/Mo = 1.5 sample results from a strong interaction among Fe, Mo and HZSM‐5. In addition, it can be tentatively presumed that the surface nitrous species from the calcinations play an important role in SCR of NOx over Fe‐Mo/ZSM‐5 catalysts.  相似文献   

7.
A series of core‐shell structural deNOx catalysts using small‐grain Beta supporting FeOx nanoparticles as the core and tunable CeO2 thin film thickness as sheaths were designed and controllably synthesized. Their catalytic performances were tested for selective catalytic reduction of NOx with NH3 (NH3‐SCR). It was found that CeO2 shell thickness plays an important role in influencing the acidity and redox properties of the catalysts. Fe‐Beta@CeO2 core‐shell catalysts exhibit excellent resistance to H2O and SO2 and high NOx conversion (above 90%) in the wide temperature range (225–565°C). The kinetics result indicates that the coating of CeO2 shell significantly increases the pore diffusion resistance of Fe‐Beta@CeO2 catalysts. Furthermore, in situ DRIFT results reveal that CeO2 shell can promote the formation of NO2 and cis‐ species. But too thick CeO2 shell (~20 nm) would result in the formation of inactive nitrate species, and thereby lead to a decrease of high‐temperature activity of the catalysts. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4430–4441, 2017  相似文献   

8.
Cu/CHA catalysts with various Cu loadings (0.5 wt%–6.0 wt%) were synthesized via incipient wetness impregnation. The catalysts were applied to the selective catalytic reduction (SCR) of NO with NH3 and NO oxidation reaction. XRD and N2 adsorption-desorption data showed that CHA structure was maintained with the incorporation of Cu, while specific surface areas decreased with increasing Cu loading. At intermediate Cu loading, 4 wt%, the highest NH3-SCR activity was observed with ~98% N2 selectivity from 150 °C to 300 °C. Small amounts of water, 2%, slightly increased NO conversion in addition to the remarkable N2O and NO2 reduction at high temperature. Water effects are attributed to the improved Cu ion reducibility and mobility. NO oxidation results provided no relation between NO2 formation and SCR activity. Physicochemical properties, NO conversion, N2 selectivity, and activation energy data showed that impregnated samples’ molecular structure and catalytic activity are comparable to the conventional ion-exchanged (IE) samples’ ones.  相似文献   

9.
Mesoporous and conventional Fe-containing ZSM-5 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnation method and tested in NO selective catalytic reduction (SCR) with NH3. It was found that mesoporous Fe-ZSM-5 catalysts exhibit higher SCR activities than comparable conventional catalysts. Furthermore, conventional Fe-ZSM-5 catalysts have maximum activity at ~2.5 wt% Fe while for the mesoporous system, optimal NO conversion is obtained for the catalysts with ~6 wt % Fe.  相似文献   

10.
The potential of the natural chabazite for the selective catalytic reduction (SCR) of NOx with NH3 is evaluated in the present work. Activity tests were performed under technically relevant reaction and temperature conditions for the fresh and hydrothermally aged catalysts. The natural chabazite before and after alkaline removal as well as after iron and copper addition were compared. The structural as well as surface and bulk properties were elucidated by a variety of complementary characterization techniques, i.e. XRD, XPS, EPR, BET, NH3‐TPD, ex situ and in situ XAS. The results indicate that an important facet for using the natural chabazite for the standard and fast SCR reactions is the removal of alkaline metals, which at the same time also leads to a partial change of the structure and the size of the iron‐containing particles. The performance and especially the hydrothermal stability can be further improved by copper addition.  相似文献   

11.
A dynamic Mars–van Krevelen kinetic model that unifies Standard and Fast SCR reactions into a single redox approach is herein proposed for V‐based catalysts for NOx removal from Diesel exhausts. Such a mechanistic model is consistent with the detailed catalytic chemistry proposed for the NH3‐NO/NO2 reacting system in which NO2 disproportionates to form nitrites and nitrates, nitrates are reduced by NO to nitrites in a key redox step, and nitrites react with NH3 to form N2 via decomposition of unstable ammonium nitrite. Intrinsic kinetic parameters were estimated by global multiresponse nonlinear regression of 42 transient runs. The model accounts for stoichiometry, selectivity, and kinetics of the global SCR process, reproducing successfully both the steady‐state and transient behaviors of the SCR reacting system over the full range (0–1) of NO2/NOx feed ratios in the 175–425°C temperature range. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

12.
The NOx NH3-SCR performance of several Cu and Fe catalysts supported on BETA and ZSM-5 zeolites has been studied in single SCR and double NSR–SCR configuration, and the activity related to the nature and reducibility of metal species on the catalyst surface. Intermediate ammonia formed in NSR improved greatly NOx conversion at the exit of the double NSR–SCR configuration, which was practically totally converted to N2.  相似文献   

13.
The reaction kinetics of selective catalytic reduction (SCR) by NH3 on NO (standard SCR) and on NO + NO2 (fast SCR) over Fe/ZSM-5 were investigated using transient and steady-state analyses. In the standard SCR, the N2 production rate was transiently promoted in the absence of gaseous NH3; this enhancement can be attributed to the negative reaction order of NH3 (between −0.21 and −0.11). The steady-state data for the standard SCR could be fit to a Langmuir–Hinshelwood-type reaction between NOad and Oad to form NO2. In the fast SCR, however, the promotion behavior in the absence of gaseous NH3 was not observed and the apparent NH3 order changed from positive to negative with NH3 concentration. The steady-state rate analysis combined with elementary reaction modeling suggested that competitive adsorption between NO2 and NH3 was occurring due to strong NO2 adsorption; this must be the main reason for the absence of the promotion effect.  相似文献   

14.
Fe-ZSM-5 catalysts, prepared by different methods, have been characterized by BET, ICP-AES, XRD, XPS, NH3-TPD and NO-TPD and evaluated for NOx reduction according to standard NH3-SCR, NH3 oxidation and NO oxidation, in absence and presence of water. The presence of water has a significant influence on both the SCR and oxidation reactions. The most active catalyst for NH3-SCR is prepared by ion exchange using FeCl2 as iron precursor. The XPS results indicate that Fe2+ ions are the main active sites for the SCR reactions, while Fe3+ ions are the primarily active sites for oxidation of ammonia.  相似文献   

15.

Abstract  

The effect of Cu loading on the selective catalytic reduction of NOx by NH3 was examined over a series of Cu ion-exchanged (20–80%) SSZ-13 zeolite catalysts. High NO reduction efficiencies (80–95%) were obtained over all catalyst samples between 250 and 500 °C, and at the gas hourly space velocity of 200,000 h−1. Both NO reduction and NH3 oxidation activities under these conditions were found to increase slightly with increasing Cu loading at low temperatures. However, NO reduction activity was suppressed with increasing Cu loadings at high temperatures (>500 °C) due to excess NH3 oxidation. The optimum Cu ion exchange level appears to be ~40–60% since higher than 80% NO reduction efficiency was obtained over 50% Cu ion-exchanged SSZ-13 up to 600 °C. The NO oxidation activity of Cu-SSZ-13 was found to be low regardless of Cu loading, although it was somewhat improved with increasing Cu ion exchange level at high temperatures. During the “fast” SCR (i.e., NO/NO2 = 1), only a slight improvement in NOx reduction activity was obtained for Cu-SSZ-13. Regardless of Cu loading, near 100% selectivity to N2 was observed; only a very small amount of N2O was produced even in the presence of NO2. The apparent activation energies for NO oxidation and NO SCR were estimated to be ~58 and ~41 kJ/mol, respectively.  相似文献   

16.
The selective catalytic reduction (SCR) of NOx by urea as a reducing agent was carried out over fresh and sulfated CuO/γ‐Al2O3 catalysts in a fluidized‐bed reactor. The optimum temperature ranges for NO reduction on the fresh and sulfated CuO/γ‐Al2O3 catalysts were 300–350 °C and 400–450 °C, respectively. NO reduction with the sulfated CuO/γ‐Al2O3 catalyst was somewhat higher than that with the fresh CuO/γ‐Al2O3 catalyst. N2O formation increased with increasing reaction temperature. Ammonia (NH3) slip increased with increasing gas velocity and decreased with increasing reaction temperature. Copyright © 2003 Society of Chemical Industry  相似文献   

17.
González  Juan M.  Villa  Aída L. 《Catalysis Letters》2021,151(10):3011-3019

Cu-SSZ-13 catalysts were synthesized with Si: Al?=?4.5 and 25, to obtain materials with isolated Cu2+ and [CuOH]1+ sites, respectively. The catalysts were tested for the selective catalytic reduction of NOx (SCR), NO oxidation and NH3 oxidation. Cu2+ sites presented the highest NO rates and lowest NH3 rates, as the temperature was increased from 300 °C to 650 °C, during SCR and NH3 oxidation, respectively. None of the Cu-SSZ-13 catalysts presented activity for NO oxidation, consistent with the absence of copper oxide clusters. In addition, catalysts composed by mechanical mixtures of Cu-SSZ-13?+?Fe-SSZ-13 with Si: Al?=?4.5 and 25 were tested for SCR, NO oxidation and NH3 oxidation, to study the effect of the presence of iron together with Cu-SSZ-13 for improving its SCR working temperature range. Higher reaction rates for NO oxidation and NH3 oxidation over Cu-SSZ-13?+?Fe-SSZ-13 showed a more relevancy of side reactions that makes a combined effect of Fe-SSZ-13 and Cu-SSZ-13 not a real improvement in high temperature SCR.

Graphic Abstract
  相似文献   

18.
This study explored the possibility of using waste organic solvent as the source of volatile organic compound (VOC) and it served as a reducing agent of selective catalytic reduction (SCR) deNOx process, in which the VOC itself can be catalytically oxidized on the mesoporous Cu and/or Al substituted MCM-41 catalysts. The synthesized Cu–Al–MCM-41 catalysts were extensively characterized by powder low-angle X-ray diffraction (XRD), N2 adsorption–desorption measurements, transmission electron microscopy (TEM), UV–Visible diffuse reflectance spectroscopy (UV–Vis DRS), 27Al magic angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR), electron paramagnetic resonance spectroscopy (EPR) and inductively coupled plasma–mass spectrometer (ICP–MS) analysis. The XRD, TEM and N2 adsorption–desorption studies clearly demonstrated the presence of a well ordered long range hexagonal array with uniform mesostructures. The Cu–Al–MCM-41 materials showed a better long-term-stability than that of copper ion-exchanged H–ZSM-5 (Cu–ZSM-5) zeolite. The Cu–Al–MCM-41 material was found to be an efficient catalyst than that of Cu–MCM-41 without aluminum for the simultaneous catalytic abatement of NOx and VOCs, which was attributed to the presence of well dispersed and isolated Cu2+ ions on the Cu–Al–MCM-41 catalyst as observed by UV–Vis DRS and EPR spectroscopic studies. And the presence of aluminum (Al3+ ions) within the framework of Cu–Al–MCM-41 stabilized the isolated Cu2+ ions thus it led to higher and stabilized activity in terms of NOx reduction.  相似文献   

19.
Cross‐linked polymeric ionic liquid material‐supported copper (Cu‐CPSIL), imidazolium‐loaded Merrifield resin‐supported copper (Cu‐PSIL) and silica dispersed CuO (CuO/SiO2), were prepared and proved to be efficient catalysts for the one‐pot synthesis of 1,4‐disubsituted‐1,2,3‐triazoles by the reaction of alkyl halides with sodium azide and terminal alkynes in water at room temperature. Moreover, these supported copper catalysts were recovered quantitatively from the reaction mixture by simple filtration and reused for five consecutive recycles without significant loss of catalytic activity. Among the three immobilized copper catalysts, Cu‐CPSIL exhibited excellent catalytic activity for the reaction of aliphatic bromides, sodium azide and terminal alkynes. The differences in the catalytic performances of the catalysts could be ascribed to the copper dispersion and the interaction between copper and the supports. In addition, water was used as the reaction media and the proton provider, the latter was found to be very important for the reaction. The XPS results suggested that the supported Cu(II) catalysts were reduced to catalytic Cu(I) species via alkynes homocoupling reaction. By means of IR and ESI‐MS studies, a possible mechanism of cycloaddition based on the reduction of Cu(II) to Cu(I) species was proposed.  相似文献   

20.
The catalytic performance of bifunctional catalysts, MOx‐Al2O3‐PO4, that contain acidic centers and different transition metal oxide components were evaluated in the gas‐phase dehydration of glycerol using the TPD‐TG‐MS technique and a continuous flow reactor experiment. The initial catalytic activity and selectivity to acrolein and acetol significantly depends on the acidity and the type of transition metal oxide. The higher the total acidity, the higher the acrolein selectivity in the order W > Mo > Cu > V~ Fe ~Cr > Ce. On the other hand, Mn‐, Cr‐, and Fe‐containing catalysts favor the formation of products of oxidative C‐C cleavage. TPD‐TG‐MS investigations of catalysts loaded with glycerol are useful tools for fast‐screening of initial activities of catalysts in the gas‐phase dehydration of glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号