首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The optical fiber probe has been for the first time applied to investigate the hydrodynamics and gas‐phase distribution at high gas/liquid ratios in a two‐phase flow monolith bed with 0.048 m diameter and 400 cpsi. Local hydrodynamic parameters including gas holdup, bubble frequency, bubble velocity, and bubble length in single channels were measured by 16 inserted single‐point optical fiber probes within the bed under a nozzle as the liquid distributor. The following findings are reported. (1) The optical fiber probe can be used as an efficient and convenient technique for measuring local hydrodynamic parameters inside the channels of a monolith bed; (2) within the range of high gas/liquid ratios under which experiments were conducted, churn flow regime occurred. In this regime, the monolith bed radial distribution of gas holdup, bubble frequency, bubble velocity, and bubble length is nonuniform in nature. © 2013 American Institute of Chemical Engineers AIChE J 60: 740–748, 2014  相似文献   

2.
Silicon carbide (SiC) foam material has been applied as monolithic tray for distillation column in our previous study. A systematic understanding of the gas distribution process on the foam tray should help to the design of commercial application. In this article, local gas holdup distribution and bubble size distribution are used to measure the gas distribution. The local gas holdup is tested by the conductive probe and the number of test point is counted in different local gas holdup. The bubbles are captured by the high‐speed camera to measure the bubble size. Bubble size is calculated as ellipsoidal bubble and counted with different pore sizes. Furthermore, a three‐stage process model is put forward to explain the uneven distribution of gas phase, and verified by the experimental values. The results show that the structure and the thickness of SiC foam is the decisive factor for the gas distribution performance. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4509–4516, 2015  相似文献   

3.
The effects of liquid phase rheology on the local hydrodynamics of bubble column reactors operating with non‐Newtonian liquids are investigated. Local bubble properties, including bubble frequency, bubble chord length, and bubble rise velocity, are measured by placing two in‐house made optical fiber probes at various locations within a bubble column reactor operating with different non‐Newtonian liquids. It was found that the presence of elasticity can noticeably increase the bubble frequency but decreases the bubble chord length and its rise velocity. The radial profiles of bubble frequency, bubble chord length, and bubble rise velocity are shown to be relatively flat at low superficial gas velocity while they become parabolic at high superficial gas velocity. Moreover, the bubble size and gas holdup are correlated with respect to dimensionless groups by considering the ratio between dynamic moduli of viscoelastic liquids. The novel proposed correlations are capable of predicting the experimental data of bubble size and gas holdup within a mean absolute percentage error of 9.3% and 10%, respectively. © 2015 American Institute of Chemical Engineers AIChE J, 62: 1382–1396, 2016  相似文献   

4.
The tri‐sensor optical probe was applied to study the hydrodynamic characteristic in a pulsed sieve plate extraction column. Two immiscible liquids consisting of the dispersed phase (kerosene) and continuous phase (water) were introduced in countercurrent operation. Local parameters such as droplet velocity, drop size, and holdup of the dispersed phase were obtained. It was found that the tri‐sensor optical probe could be used as an efficient and convenient technique for measuring local hydrodynamic parameters inside the pulsed sieve plate extraction column. Furthermore, the results indicated that pulsation intensity imposed more influence on these hydrodynamic parameters than two‐phase superficial flow rates in the investigated ranges. Experimental results were found to be in good agreement with the empirical correlations reported in literature. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3958–3963, 2015  相似文献   

5.
Detailed measurements and computational fluid dynamics (CFD) investigation of the hydrodynamics in a bubble column containing internal features causing flow disturbances are presented for both air and helium gases. An optical needle probe has been used to measure profiles of bubble size, bubble velocity, and gas holdup at different locations across the cross section of the column. An approach combining CFD with population balances is able to represent observed multiphase flow phenomena such as the effect of the pipes to remix and redistribute the gas as well as the tendency of the gas to channel through a slit in the pipes rather than go around the pipes. The comparison of CFD simulation to experimental measurements reveal that the overall decrease in gas holdup observed when switching from air to helium gas can be explained by swarm effects, whereas the steeper decrease in the gas holdup profile across the column is due to coalescence effects. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3764–3774, 2018  相似文献   

6.
Multiphase flow hydrodynamics in a novel gas–liquid–solid jet-loop reactor (JLR) were experimentally investigated at the macroscales and mesoscales. The chord length distribution was measured by an optical fiber probe and transformed for bubble size distribution through the maximum entropy method. The impacts of key operating conditions (superficial gas and liquid velocity, solid loading) on hydrodynamics at different axial and radial locations were comprehensively investigated. JLR was found to have good solid suspension ability owing to the internal circulation of bubbles and liquid flow. The gas holdup, axial liquid velocity, and bubble velocity increase with gas velocity, while liquid velocity has little influence on them. Compared with the gas–liquid JLRs, solids decrease the gas holdup and liquid circulation, reduces the bubble velocity and delays the flow development due to the enhanced interaction between bubbles and particles (Stokes number >1). This work also provides a benchmark data for computational fluid dynamics (CFD) model validation. © 2019 American Institute of Chemical Engineers AIChE J, 65: e16537, 2019  相似文献   

7.
Local gas holdup (?) and interfacial area (a) at different axial locations of the riser and downcomer of a split-column airlift bioreactor were investigated using a sophisticated four-point optical probe. Such a type of a reactor has been found to outperform both bubble-column and draft-tube airlift bioreactors for culturing microalgae. The effect of superficial gas velocity (0.3–2.8 cm/s) on both gas holdup and interfacial area was studied using air–water system. It was found that both gas holdup and interfacial area significantly decrease from the top to the bottom of the downcomer for all superficial gas velocities, while their variation from the bottom to the top for the riser was found to be much less than that of the downcomer at the same superficial gas velocities. It was found that the interfacial area of the riser tends to increase by 35% from the bottom to the upper middle point of the column (6.15 Z/D from the bottom), then declines by 10% at the top location (7.7 Z/D from the bottom). Empirical correlations were obtained relating the gas holdup and specific interfacial area to superficial gas velocity of the riser and the downcomer of the bioreactor. It was found that the riser has to be represented as upper and lower halves to be best correlated, while the only upper half of the downcomer was successfully correlated. Having obtained variable interfacial area (a) at different locations of both the riser and the downcomer of the bioreactor, the local KLa consequently changes as a function of the location of the bioreactor and hence needs to be investigated locally as opposed to the current studies that have only measured and correlated the overall KLa.  相似文献   

8.
The laser Doppler anemometer (LDA) and conductivity probes were used for measuring the local hydrodynamic performances such as gas holdup and liquid velocity in a lab-scale gas–liquid–TiO2 nanoparticles three-phase bubble column. Effects of operating parameters on the local gas holdup and liquid velocity were investigated systematically. Experimental results showed that local averaged axial liquid velocity and local averaged gas holdup increased with increasing superficial gas velocity but decreased with increasing TiO2 nanoparticles loading and the axial distance from the bottom of the bubble column. A three-dimensional computational fluid dynamic (CFD) model was developed in this paper to simulate the structure of gas–liquid–TiO2 nanoparticles three-phase flow in the bubble column. The time-averaged and time-dependent predictions were compared with experimental data for model validation. A successful prediction of instantaneous local gas holdup, gas velocity, and liquid velocity were also presented.  相似文献   

9.
A gas‐liquid Eulerian porous media computational fluid dynamics (CFD) model was developed for an absorber with structured packing to remove CO2 from natural gas by mono‐ethanol‐amine (MEA). The three‐dimensional geometry of the amine absorber with Mellapak 500.X was constructed to investigate the effect of the tilting and motion experienced on ships and barges for offshore plants. The momentum equation included porous resistance, gas‐liquid momentum exchange, and liquid dispersion to replace structured‐packing by porous media. The mass equation involved mass transfer of CO2 gas into MEA solution, and one chemical reaction. Parameters of the CFD model were adjusted to fit experimental data measured in the CO2‐MEA system. As the tilting angle increased, the liquid holdup and effective interfacial area decreased and CO2 removal efficiency was lowered. The uniformity of liquid holdup deteriorated by 10% for a 3° static tilting, and a rolling motion with 4.5° amplitude and 12 s period, respectively. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4412–4425, 2015  相似文献   

10.
Using a light transmission optical probe, the effect of superficial gas velocity on bubble properties(bubble size, bubble rising velocity, bubble frequency and local gas holdup) at axial and radial positions was determined in the riser and the downcomer of a concentric cylindrical airlift reactor. The vertical bubble length, the bubble rising velocity and the bubble frequency at axis in the riser increased with increasing superficial gas velocity and the bed height. The radial distribution of the local gas holdup, vertical bubble length and bubble frequency in the riser and the downcomer were found to be non-uniform. The profiles of the local gas holdup, vertical bubble length and bubble rising velocity in the riser were shown as parabolic shapes. The local gas holdup, the vertical bubble length and the bubble frequency in the downcomer changed with superficial gas velocity and the distance from the top of the draft tube.  相似文献   

11.
Axial distribution of phase holdups was studied in the riser of a gas-liquid-solid circulating fluidized bed (GLSCFB). The effects of gas and liquid superficial velocities as well as solids circulation rate on radial distribution of phase holdups at different axial locations were investigated. Electrical resistance tomography (ERT) and optical fiber probe were employed online in the experiments for a precise determination of phase holdups. An empirical model was developed for the determination of gas bubbles in analysis of data obtained by fiber optic sensor. Gas holdup was higher at the central region of the riser and increased axially due to coalescence of small bubbles and decrease of hydrostatic pressure at higher levels in the riser. This led to an increase in solids holdup in regions close to the wall which was slightly higher than the solids holdup at the wall. Both solids and liquid holdups were lower in the central region and increased radially towards the wall. Gas holdup decreased with increasing solids circulation rate but opposite trend was observed for solids holdup. Solids circulation rate had negligible effect on liquid holdup at lower axial locations compared to top of the riser. Cross-sectional average of solids, gas and liquid holdups did not change significantly at higher liquid superficial velocities.  相似文献   

12.
气液两相流段塞流持气率快关阀法优化设计   总被引:2,自引:1,他引:1       下载免费PDF全文
快关阀法(quick closing valve,QCV)是气液两相流流动实验中常用持气率标定手段。特别是由于段塞流中气塞与液塞表现为随机可变流动特性,不合理的快关阀间距及截取次数选择将会导致持气率测量误差增大。提出了一种持气率快关阀法优化设计方案。首先,采用环形电导传感器上下游阵列信号计算流体相关流速,根据相关测速结果提取上游传感器信号对应流动工况的气塞与液塞间隔长度序列,采用Maxwell方程提取液塞中含泡持气率;在此基础上,再依气塞在管道内占比模拟计算不同快关阀间距时捕获的持气率波动序列。通过分析持气率序列波动,从统计学角度指出了95%置信度及5%允许误差情况下所需最低截取次数。最后,在快关阀门间距为1.55 m的条件下对段塞流所需截取次数进行了实验验证。通过对快关阀法持气率测量误差进行统计分析,证明了设置两个快关阀门间距的充分条件。  相似文献   

13.
The hydrodynamics of a slurry airlift reactor at high solid concentrations were experimentally studied. The influences of the average solid concentration, superficial gas velocity and particle size on the radial and axial profiles of the solid holdup, average gas holdup and liquid circulation velocity were investigated. The local solid holdup was measured with an electrical conductivity probe. At low solid concentrations or high superficial gas velocities, the radial profile of the solid holdup was uniform. At high solid concentrations, the radial profile of the solid holdup was nonuniform, with higher values near the wall. This radial nonuniformity increased with decreased superficial gas velocity or increased average solid concentration. The axial profile of the cross-sectional average solid holdup was uniform at all conditions in this work, even at high solid concentrations. The average gas holdup and liquid circulation velocity increased with the superficial gas velocity but decreased with the average solid concentration. A mathematical model based on the balance of the transverse lift force and turbulent dispersion force was proposed to predict the radial profile of the solid holdup. Reasonable predictions were obtained from this model with an adjustable model parameter.  相似文献   

14.
An artificial neural network (ANN) model was proposed for the long-term prediction of nonlinear dynamics underlying holdup fluctuations in bubble columns with three different diameters of 200, 400 and 800 mm. Local holdup fluctuations were measured with an optical probe in the bubble columns. The superficial gas velocity was varied in the range of 33–90 mm/s. The time intervals between successive bubbles were extracted from the time series of holdup fluctuations to represent hydrodynamic behaviors in the system and used as training and validation data sets. The effect of data preprocessing as well as the numbers of nodes in input and hidden layers on the ANN training behavior was systematically investigated. The prediction capability of the ANN was evaluated in terms of time-averaged characteristics, power spectra and Lyapunov exponents. It was observed that: the ANN model, which was trained with experimental time series and gas velocity, can be used for the long-term prediction of dynamic characteristics in bubble columns by using random data as the initial input. The results indicate that the trained ANN models have the potential of modeling nonlinear hydrodynamic behaviors in bubble columns.  相似文献   

15.
气固循环流化床颗粒浓度波动信号的预测   总被引:2,自引:0,他引:2  
结合重构相空间方法与人工神经网络法,建立了混沌时间序列预测模型. 应用此模型对f100 mm?16 m的上行气固循环流化床系统中的FCC固体颗粒局部颗粒浓度波动信号进行了预测. 结果表明:循环流化床的颗粒浓度波动信号只能被短期预测,其长期行为是不可预测的,这从另一个角度说明气固循环流化床系统是一混沌系统.  相似文献   

16.
Due to their numerous advantages, Slurry Bubble Column Reactors (SBCR) are gaining wide importance in the petroleum, petrochemical, chemical, and biochemical industries. Most previous literature studies on the fluid dynamics and the phase holdup distribution in SBCR are limited to low superficial gas velocity, low solids loading, and the atmospheric pressure. Moreover, the presence of a solids phase poses difficulties in probe measurement techniques such as pitot tube and optical probe and see through measurement techniques such as particle image velocimetry (PIV), Laser Doppler Velocimetry (LDV). Single source γ‐ray Computed Tomography (CT) has been used to measure cross‐sectional phase holdup distribution in two‐phase systems. In the present study, a new methodology has been developed that combines a single source CT with overall gas holdup measurement, along with valid assumptions, to measure the cross‐sectional holdup distribution of the three phases in a slurry bubble column. The implementation of developed methodology has been demonstrated using air‐water‐glass beads (150 µm) at selected conditions of superficial gas velocity and operating pressure.  相似文献   

17.
Accurate prediction of dispersed phase droplet behavior is crucial to the design and scaling‐up of an extraction column. In this article, the dispersed droplet velocity algorithm and the diameter algorithm in a liquid–liquid two‐phase flow have been developed based on the bubble velocity model in gas–liquid two‐phase flow of Lucas [Measurement Science & Technology. 749, 758(2005)] and Shen [International Journal of Multiphase Flow. 593, 617(2005)]. Hydrodynamic characteristics, including droplet diameter, holdup and droplet velocity, were measured using a self‐made four‐sensor optical fiber probe in a 38 mm‐diameter pulsed sieve‐plate extraction column. Water and kerosene were used as continuous and dispersed phases, respectively. The influences of the pulsed intensity, the continuous and dispersed phase superficial velocities on the hydrodynamic characteristics were investigated. The experimental results show that it is reliable to use a four‐sensor optical probe to measure the hydrodynamic characteristics of a pulsed extraction column. © 2016 American Institute of Chemical Engineers AIChE J, 63: 801–811, 2017  相似文献   

18.
Fundamental characteristics of hydrodynamics and mass transfer have been measured in an air lift slurry reactor with a draft tube. The solid suspension capacity, i.e., the critical solid holdup, the gas holdup and the volumetric gas-liquid mass transfer coefficient were measured in the two draft tube columns of 0.1485 and 0.10?m in diameter. Four activated carbon beads ranging in size from 0.25 to 2.19?mm in average diameter were utilized as suspended solids in the experiments.

The critical solid holdup in the draft tube slurry column is found to be much greater than that in the conventional bubble column. An empirical correlation is developed to account for the critical solid holdup behavior in the draft tube column. The gas holdup in the draft tube column agrees well with that in the bubble column. The overall gas-liquid mass transfer coefficient, k1awas measured by the oxygen probe method. The effect of solid holdup on k1a is found to be negligible in the present system. The empirical equation is developed to correlate k1a in the draft tube slurry reactor.  相似文献   


19.
A new model for determining bubble size distributions in bubble columns by the dynamic gasdisengagement(DGD)technique is developed.It is based on an idea of non-uniform steady statedirstribution of bubble dispersion.Interpreting the axial non-uniformity,this model gives axial gasholdup distributions.If assuming an axially homogeneous dispersion,a radial gas holdup distributioncan be obtained.The Sauter mean diameters or specific interfacial areas for several systems areestimated by the technique.The results for an air-water system agree with those measured by afive-point conductivity probe technique.The obtained axial gas holdup distributions agree well withreported measurements and the radial gas holdup distributions are also reasonable.  相似文献   

20.
The effects of particle concentration and size on hydrodynamics and mass transport in an air–water slurry bubble column were experimentally studied. When the particle concentration αs increased from 0% to 20%, the averaged gas holdup decreased by ~30%, gas holdup of small bubbles and gas–liquid volumetric mass transfer coefficient decreased by up to 50%, while the gas holdup of large bubbles increased slightly. The overall effect of particle size was insignificant. A liquid turbulence attenuation model which could quantitatively describe the effects of particle concentration and size was first proposed. Semi-empirical correlations were obtained based on extensive experimental data in a wide range of operating conditions and corrected liquid properties. The gas holdup and mass transfer coefficient calculated by the correlations agreed with the experimental data from both two-phase and three-phase bubble columns, with a maximum error <25%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号