首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 18 毫秒
1.
采用溶胶-凝胶法制备W~(6+)、Ba~(2+)共掺杂La_2Mo_2O_9电解质材料,对所得样品进行XRD、IR、TG-DSC、SEM等表征,通过分析表征数据,可以得到合适的掺杂比例及烧结温度。实验表明合适的掺杂比例可以抑制基体的相变并提高其电导率,800℃所得不同样品的电导率中,La_(1.9)Ba_(0.1)Mo_(1.85)W_(0.15)O_9具有最高的氧离子电导率,可达到0.0307 S·cm~(-1),相对于基体La_2Mo_2O_9有所提高,有望成为性能优良的中温电解质材料。  相似文献   

2.
以分析纯Al_2O_3、Na2CO3、Li2CO3为原料,加入少量La_2O_3,采用无压埋烧方式,制备Na-β″(β)-Al_2O_3固体电解质。通过XRD、SEM、DH7000型电化学工作站等表征测试手段,研究La_2O_3添加量对电解质相组成、微观结构、电导率、活化能的影响。结果表明,适量的La_2O_3掺杂可以起到促进β"-Al_2O_3相晶体发育、改善材料的微观形貌、提高固体电解质材料的电导率的作用;当La_2O_3掺杂量为0.5 wt%时,样品的电导率最高,300℃下的电导率从未掺杂样品的0.0152 S·cm~(-1)提高到0.0235 S·cm~(-1),电导活化能由未掺杂样品的0.1481 eV降低至0.1213 eV。  相似文献   

3.
Ce0.8Sm0.1Gd0.1O1.9电解质的制备及其性能   总被引:1,自引:0,他引:1  
通过共沉淀法制备了Sm、Gd共同掺杂的CeO2的前驱体粉末,并将粉末经煅烧、压制、烧结制作成相应的电解质材料.对煅烧得到的电解质粉末及相应的电解质材料的性能进行了表征.实验结果表明:共沉淀法成功制备出了Sm、Gd共同掺杂的CeO2粉末.煅烧所得的电解质粉末具有良好的烧结活性,1400℃下烧结后相对密度达到93.4%.电导率的测试表明,电解质材料在中温范围有较高的电导率,800℃时,其电导率达到了0.076 S·cm-1,有望成为中温固体氧化物燃料电池的电解质材料.  相似文献   

4.
以Ce(NO3)3·6H2O、Sm2O3和Sc2O3等为原料,采用凝胶浇注法制备出了不同组成的Ce0.8Sm0.2–xScxO2–δ(CSSO)粉体,并压制、烧结制得CSSO烧结体试样。对所制备CSSO粉体的相结构及烧结体的致密度、电导率等进行了测试,考察了Sm2O3和Sc2O3共掺杂对Ce元素价态稳定性的影响。结果表明:凝胶浇注干凝胶在800℃煅烧3 h可获得具有单一萤石结构的CSSO粉体,其成形压坯经1 500℃烧结后相对密度可达97.13%;CSSO烧结体的电导呈P型导体特征,组成为Ce0.8Sm0.15Sc0.05O2–δ的烧结体试样的电导率最高,在600℃时可达1.92×10–2 S/cm。适量掺杂Sc可提高CSSO电解质在还原气氛中的稳定性。  相似文献   

5.
以硝酸铈、硝酸铜、硝酸钐为原料,柠檬酸为络合剂,采用溶胶-凝胶法制备了固体氧化物燃料电池(SOFCs)电解质材料Ce0.8 Sm0.2-x Cux O1.9-δ(x=0、0.02、0.04、0.08、0.12、0.16、0.20),并通过红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、交流阻抗(AC)等技术对样品进行了分析表征.结果表明,采用溶胶-凝胶法经600℃煅烧所得粉体呈现出单相的立方萤石结构,超细粉体Ce0.8 Sm0.2-x Cux O1.9-δ具有较高的烧结活性.经1500℃烧结3 h后得到的Ce0.8 Sm0.2-x Cux O1.9-δ系列电解质陶瓷,其相对密度均大于95%.电化学性能研究表明,Sm、Cu双掺杂可以提高CeO2基电解质的性能.其中,Ce0.8 Sm0.18 Cu0.02 O1.89电导率最大,在800℃时达到0.06 S/cm,活化能为0.33 eV.  相似文献   

6.
采用固相反应法合成不同含量Sm3+的CeO2基粉料Ce0.84Y0.16-xSmxO2-δ(x=0,0.02,0.04和0.06)并在1600℃烧成制备了电解质材料。采用X射线衍射,膨胀测量法和交流阻抗谱测试电解质材料的晶体结构、热膨胀和离子电导率。结果表明:所有电解质材料样品均为单一的萤石结构。在400~800℃范围内,与单掺杂Y3+的样品相比,Sm3+和Y3+共掺的样品Ce0.84Y0.16-xSmxO2-δ(x=0.02,0.04和0.06)都显示了较高的离子电导率。当x=0.02时,样品的离子电导值达到最大值。同时还发现所有样品的热膨胀均随温度的升高而线性增长。  相似文献   

7.
采用甘氨酸-硝酸盐燃烧法合成了中低温固体氧化物燃料电池(SOFCs)的电解质材料Ce_(0.8)Y_(0.2-x)Sm_xO_(1.9)(CYSO,x=0.0~0.20)。通过热重-差热分析(TG-DSC), X射线衍射(XRD),扫描电镜(SEM)及交流阻抗技术分析材料的性能.结果表明:初始粉体经700℃煅烧2 h后形成单相的结晶性能良好的具有萤石结构晶粒尺寸约为25 nm的CYSO纳米粉体,CYSO晶格常数随Sm掺杂量的增加而增大;CYSO纳米粉体烧结性能良好,在1400℃烧结5 h后样品的相对密度均超过95.0%。电化学性能研究表明Sm、Y共掺杂能改善CeO_2基电解质材料的性能,其中Ce_(0.8)Y_(0.2-x)Sm_xO_(1.9)在800℃时电导率高达0.050 S/cm,电导活化能低至0.386 eV。因此,甘氨酸-硝酸盐燃烧法合成CYSO有利于降低烧结温度,提高纯度,改善电解质的性能。  相似文献   

8.
采用共压共烧法来制备YSZ(掺杂0.8%MnO_2)固体电解质及多孔层,使用湿浸渍技术制备敏感材料CuO,并组装成传感器。采用SEM对材料表面和断面的微观形貌进行分析,通过XRD对材料的相组成进行分析,使用电化学工作站对材料的电导率和传感器的敏感性能进行了研究。实验表明,所制得的固体电解质层和多孔层结合紧密,掺杂MnO_2的电解质电导率(800℃)达10-2的数量级,满足电解质对电导率的要求,MnO_2的掺杂可以有效降低YSZ固体电解质的烧结温度;在650℃时,随着NO2浓度逐渐升高相角逐渐增大而阻抗逐渐减小,在低频0~30Hz之间曲线区分较好。650℃时,CuO传感器对NO_2有良好的响应。  相似文献   

9.
由于Bi_2VO_(5.5)材料作为电解质在低较温度下具有较高的氧离子电导率,是用作中低温制氧机理想的电解质材料。优选出双掺杂的Bi_2V_(0.9)Cu_(0.075)Nb_(0.025)O_(11-δ)电解质陶瓷膜具有最高的氧离子电导率,并提高了机械性能;用共沉淀法合成的电解质粉体,可改善电解质陶瓷膜的性能;La_(0.6)Sr_(0.4)Co_(0.8)Fe_(0.2)O_3和Bi_2Cu_(0.1)V_(0.9)O_(5.35)混合氧化物是BIMEVOX电解质陶瓷膜最优的电极材料。对双掺杂金属离子、合成方法和电极材料对BIMEVOX电解质陶瓷膜性能影响进行了介绍。  相似文献   

10.
以硝酸镧、钼酸铵、硫酸锰为原料,以柠檬酸为络合剂,采用溶胶-凝胶法合成了可作为中温固体氧化物燃料电池(SOFCs)使用的电解质材料La_2Mo_(2-x)Mn_xO_(9-δ)(x=0、0.05、0.10、0.15、0.20),通过红外光谱(FTIR)、热分析(TGDSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)、交流阻抗(AC)测试等手段对样品进行了表征。研究表明,干凝胶经700℃煅烧2 h后得到了纯相的高烧结活性的La_2Mo_(2-x)Mn_xO_(9-δ)(x=0、0.05、0.10、0.15、0.20)粉体,其在950℃烧结2h即可获得相对密度大于97%的烧结体。电化学性能研究表明Mn掺杂可以有效的提高La_2Mo_2O_9电解质材料的电导率,其中La_2Mo_(1.9)Mn_(0.1)O_(8.9)在800℃时电导率高达0.028 S/cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号