首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
5-Aminolevulinic acid (5-ALA) is a naturally occurring non-proteinogenic amino acid, which contributes to the diagnosis and therapeutic approaches of various cancers, including glioblastoma (GBM). In the present study, we aimed to investigate whether 5-ALA exerted cytotoxic effects on GBM cells. We assessed cell viability, apoptosis rate, mRNA expressions of various apoptosis-related genes, generation of reactive oxygen species (ROS), and migration ability of the human U-87 malignant GBM cell line (U87MG) treated with 5-ALA at different doses. The half-maximal inhibitory concentration of 5-ALA on U87MG cells was 500 μg/mL after 7 days; 5-ALA was not toxic for human optic cells and NIH-3T3 cells at this concentration. The application of 5-ALA led to a significant increase in apoptotic cells, enhancement of Bax and p53 expressions, reduction in Bcl-2 expression, and an increase in ROS generation. Furthermore, the application of 5-ALA increased the accumulation of U87MG cells in the SUB-G1 population, decreased the expression of cyclin D1, and reduced the migration ability of U87MG cells. Our data indicate the potential cytotoxic effects of 5-ALA on U87MG cells. Further studies are required to determine the spectrum of the antitumor activity of 5-ALA on GBM.  相似文献   

2.
Glioblastoma (GBM) is the leading malignant intracranial tumor and is associated with a poor prognosis. Highly purified, activated natural killer (NK) cells, designated as genuine induced NK cells (GiNKs), represent a promising immunotherapy for GBM. We evaluated the anti-tumor effect of GiNKs in association with the programmed death 1(PD-1)/PD-ligand 1 (PD-L1) immune checkpoint pathway. We determined the level of PD-1 expression, a receptor known to down-regulate the immune response against malignancy, on GiNKs. PD-L1 expression on glioma cell lines (GBM-like cell line U87MG, and GBM cell line T98G) was also determined. To evaluate the anti-tumor activity of GiNKs in vivo, we used a xenograft model of subcutaneously implanted U87MG cells in immunocompromised NOG mice. The GiNKs expressed very low levels of PD-1. Although PD-L1 was expressed on U87MG and T98G cells, the expression levels were highly variable. Our xenograft model revealed that the retro-orbital administration of GiNKs and interleukin-2 (IL-2) prolonged the survival of NOG mice bearing subcutaneous U87MG-derived tumors. PD-1 blocking antibodies did not have an additive effect with GiNKs for prolonging survival. GiNKs may represent a promising cell-based immunotherapy for patients with GBM and are minimally affected by the PD-1/PD-L1 immune evasion axis in GBM.  相似文献   

3.
Background: Glioblastoma multiforme (GBM) is the most frequent and aggressive primary brain tumor, and macrophages account for 30–40% of its composition. Most of these macrophages derive from bone marrow monocytes playing a crucial role in tumor progression. Unraveling the mechanisms of macrophages-GBM crosstalk in an appropriate model will contribute to the development of specific and more successful therapies. We investigated the interaction of U87MG human GBM cells with primary human CD14+ monocytes or the THP-1 cell line with the aim of establishing a physiologically relevant heterotypic culture model. Methods: primary monocytes and THP-1 cells were cultured in the presence of U87MG conditioned media or co-cultured together with previously formed GBM spheroids. Monocyte differentiation was determined by flow cytometry. Results: primary monocytes differentiate to M2 macrophages when incubated with U87MG conditioned media in 2-dimensional culture, as determined by the increased percentage of CD14+CD206+ and CD64+CD206+ populations in CD11b+ cells. Moreover, the mitochondrial protein p32/gC1qR is expressed in monocytes exposed to U87MG conditioned media. When primary CD14+ monocytes or THP-1 cells are added to previously formed GBM spheroids, both invade and establish within them. However, only primary monocytes differentiate and acquire a clear M2 phenotype characterized by the upregulation of CD206, CD163, and MERTK surface markers on the CD11b+CD14+ population and induce alterations in the sphericity of the cell cultures. Conclusion: our results present a new physiologically relevant model to study GBM/macrophage interactions in a human setting and suggest that both soluble GBM factors, as well as cell-contact dependent signals, are strong inducers of anti-inflammatory macrophages within the tumor niche.  相似文献   

4.
Glioblastoma (GBM) is a barely treatable disease due to its profound chemoresistance. A distinct inter- and intratumoral heterogeneity reflected by specialized microenvironmental niches and different tumor cell subpopulations allows GBMs to evade therapy regimens. Thus, there is an urgent need to develop alternative treatment strategies. A promising candidate for the treatment of GBMs is AT101, the R(-) enantiomer of gossypol. The present study evaluates the effects of AT101, alone or in combination with temozolomide (TMZ), in a microenvironmental glioma stem cell niche model of two GBM cell lines (U251MG and U87MG). AT101 was found to induce strong cytotoxic effects on U251MG and U87MG stem-like cells in comparison to the respective native cells. Moreover, a higher sensitivity against treatment with AT101 was observed upon incubation of native cells with a stem-like cell-conditioned medium. This higher sensitivity was reflected by a specific inhibitory influence on the p-p42/44 signaling pathway. Further, the expression of CXCR7 and the interleukin-6 receptor was significantly regulated upon these stimulatory conditions. Since tumor stem-like cells are known to mediate the development of tumor recurrences and were observed to strongly respond to the AT101 treatment, this might represent a promising approach to prevent the development of GBM recurrences.  相似文献   

5.
6.
Background: Vasculogenic mimicry (VM) is a functional microcirculation pattern formed by aggressive tumor cells. Thus far, no effective drugs have been developed to target VM. Glioblastoma (GBM) is the most malignant form of brain cancer and is a highly vascularized tumor. Vasculogenic mimicry represents a means whereby GBM can escape anti-angiogenic therapies. Methods: Here, using an in vitro tube formation assay on Matrigel, we evaluated the ability of N6-isopentenyladenosine (iPA) to interfere with vasculogenic mimicry (VM). RhoA activity was assessed using a pull-down assay, while the modulation of the adherens junctions proteins was analyzed by Western blot analysis. Results: We found that iPA at sublethal doses inhibited the formation of capillary-like structures suppressing cell migration and invasion of U87MG, U343MG, and U251MG cells, of patient-derived human GBM cells and GBM stem cells. iPA reduces the vascular endothelial cadherin (VE-cadherin) expression levels in a dose-dependent manner, impairs the vasculogenic mimicry network by modulation of the Src/p120-catenin pathway and inhibition of RhoA-GTPase activity. Conclusions: Taken together, our results revealed iPA as a promising novel anti-VM drug in GBM clinical therapeutics.  相似文献   

7.
Background: Nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as Nrf2) is associated with cellular progression and chemotherapeutic resistance in some human cancers. We tested the relationship between Nrf2 expression and survival of patients with primary brain tumors (PBTs). Methods: In order to realize Nrf2 protein expression in gliomas, Western blot analysis was performed in normal brain tissue and U87MG, LN229, GBM8401 and U118MG glioma cell lines protein lysates. Then, U87MG, LN229, and GBM8401 mRNA were applied to performed quantitative RT-PCR for detect Nrf2 gene expression in glioma cell lines. At last, immunohistochemical analysis was used to determine the expression of Nrf2 in samples from 178 PBTs and 10 non-neoplastic brain tissues. Results: In these included in vitro studies, both Nrf2 protein and mRNA expression in all human glioma cell lines were higher than normal brain tissue. Similarly, on the viewpoint of immunohistochemistry, Nrf2 expression in gliomas were positively correlated with World Health Organization (WHO) grades. Additionally, compared with the expression of Nrf2 in non-neoplastic brain tissue, expression in meningiomas was of a stronger intensity and was present in a higher percentage of cells. Furthermore, scores were significantly higher in WHO grade II than in WHO grade I meningiomas. Finally, overall survival tended to be shorter in patients whose PBTs had higher expression of Nrf2, although the correlation was not statistically significant. Conclusions: Nrf2 overexpression positively correlated with WHO grade in gliomas and meningiomas. On the other hand, Nrf2 immunohistochemical stain could help pathologists to differentiate atypical meningiomas from benign tumors. Therefore, Nrf2 expression may be a useful biomarker to predict WHO grade and cellular behavior of PBTs.  相似文献   

8.
Neuromyelitis optica (NMO) is a demyelinating autoimmune disease of the optic nerve and spinal cord triggered by binding of NMO‐specific immunoglobulin G (NMO‐IgG) auto‐antibodies to the water channel aquaporin‐4 (AQP4) in astrocytes. To find potential NMO therapeutics, a screening system was established and used to identify inhibitors of NMO‐IgG‐mediated complement‐dependent cytotoxicity (CDC). The screening of approximately 400 compounds yielded potent hit compounds with inhibitory effects against CDC in U87‐MG cells expressing human AQP4. Derivatives of the hit compounds were synthesized and evaluated for their inhibition of CDC. Of the small molecules synthesized, (E)‐1‐(2‐((4‐methoxyphenyl)sulfonyl)vinyl)‐[4‐[(3‐trifluoromethyl)phenyl] methoxy]benzene ( 5 c ) showed the most potent activity in both stably transfected U87‐MG cells and mice‐derived astrocytes. The results of this study suggest that 5 c , which targets NMO‐IgG‐specific CDC, may be useful as a research tool and a potential candidate for therapeutic development for the treatment of NMO.  相似文献   

9.
Glioblastoma (GBM), the most common primary brain tumor, is a complex and extremely aggressive disease. Despite recent advances in molecular biology, there is a lack of biomarkers, which would improve GBM’s diagnosis, prognosis, and therapy. Here, we analyzed by qPCR the expression levels of a set of miRNAs in GBM and lower-grade glioma human tissue samples and performed a survival analysis in silico. We then determined the expression of same miRNAs and their selected target mRNAs in small extracellular vesicles (sEVs) of GBM cell lines. We showed that the expression of miR-21-5p was significantly increased in GBM tissue compared to lower-grade glioma and reference brain tissue, while miR-124-3p and miR-138-5p were overexpressed in reference brain tissue compared to GBM. We also demonstrated that miR-9-5p and miR-124-3p were overexpressed in the sEVs of GBM stem cell lines (NCH421k or NCH644, respectively) compared to the sEVs of all other GBM cell lines and astrocytes. VIM mRNA, a target of miR-124-3p and miR-138-5p, was overexpressed in the sEVs of U251 and U87 GBM cell lines compared to the sEVs of GBM stem cell line and also astrocytes. Our results suggest VIM mRNA, miR-9-5p miRNA, and miR-124-3p miRNA could serve as biomarkers of the sEVs of GBM cells.  相似文献   

10.
11.
Sphingosine-1-phosphate (S1P) is a crucial mediator involved in the progression of different cancers, including glioblastoma multiforme (GBM), the most frequent and deadly human brain tumor, characterized by extensive invasiveness and rapid cell growth. Most of GBMs overexpress the epidermal growth factor receptor (EGFR), and we investigated the possible link between S1P and EGFR signaling pathways, focusing on its role in GBM survival, using the U87MG human cell line overexpressing EGFR (EGFR+). We previously demonstrated that EGFR+ cells have higher levels of extracellular S1P and increased sphingosine kinase-1 (SK1) activity than empty vector expressing cells. Notably, we demonstrated that EGFR+ cells are resistant to temozolomide (TMZ), the standard chemotherapeutic drug in GBM treatment, and the inhibition of SK1 or S1P receptors made EGFR+ cells sensitive to TMZ; moreover, exogenous S1P reverted this effect, thus involving extracellular S1P as a survival signal in TMZ resistance in GBM cells. In addition, both PI3K/AKT and MAPK inhibitors markedly reduced cell survival, suggesting that the enhanced resistance to TMZ of EGFR+ cells is dependent on the increased S1P secretion, downstream of the EGFR-ERK-SK1-S1P pathway. Altogether, our study provides evidence of a functional link between S1P and EGFR signaling pathways enhancing the survival properties of GBM cells.  相似文献   

12.
Glioblastoma multiforme (GBM) recurrences after temozolomide (TMZ) treatment result from the expansion of drug-resistant and potentially invasive GBM cells. This process is facilitated by O6-Methylguanine-DNA Methyltransferase (MGMT), which counteracts alkylating TMZ activity. We traced the expansion of invasive cell lineages under persistent chemotherapeutic stress in MGMTlow (U87) and MGMThigh (T98G) GBM populations to look into the mechanisms of TMZ-induced microevolution of GBM invasiveness. TMZ treatment induced short-term, pro-invasive phenotypic shifts of U87 cells, in the absence of Snail-1 activation. They were illustrated by a transient induction of their motility and followed by the hypertrophy and the signs of senescence in scarce U87 sub-populations that survived long-term TMZ stress. In turn, MGMThigh T98G cells reacted to the long-term TMZ treatment with the permanent induction of invasiveness. Ectopic Snail-1 down-regulation attenuated this effect, whereas its up-regulation augmented T98G invasiveness. MGMTlow and MGMThigh cells both reacted to the long-term TMZ stress with the induction of Cx43 expression. However, only in MGMThigh T98G populations, Cx43 was directly involved in the induction of invasiveness, as manifested by the induction of T98G invasiveness after ectopic Cx43 up-regulation and by the opposite effect after Cx43 down-regulation. Collectively, Snail-1/Cx43-dependent signaling participates in the long-term TMZ-induced microevolution of the invasive GBM front. High MGMT activity remains a prerequisite for this process, even though MGMT-related GBM chemoresistance is not necessary for its initiation.  相似文献   

13.
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and usually lethal lung disease and it has been widely accepted that fibroblast proliferation is one of the key characteristics of IPF. Long noncoding RNAs (lncRNAs) play vital roles in the pathogenesis of many diseases. In this study, we investigated the role of lncRNA FENDRR on fibroblast proliferation. Human lung fibroblasts stably overexpressing FENDRR showed a reduced cell proliferation compared to those expressing the control vector. On the other hand, FENDRR silencing increased fibroblast proliferation. FENDRR bound serine-arginine rich splicing factor 9 (SRSF9) and inhibited the phosphorylation of p70 ribosomal S6 kinase 1 (PS6K), a downstream protein of the mammalian target of rapamycin (mTOR) signaling. Silencing SRSF9 reduced fibroblast proliferation. FENDRR reduced β-catenin protein, but not mRNA levels. The reduction of β-catenin protein levels in lung fibroblasts by gene silencing or chemical inhibitor decreased fibroblast proliferation. Adenovirus-mediated FENDRR transfer to the lungs of mice reduced asbestos-induced fibrotic lesions and collagen deposition. RNA sequencing of lung tissues identified 7 cell proliferation-related genes that were up-regulated by asbestos but reversed by FENDRR. In conclusion, FENDRR inhibits fibroblast proliferation and functions as an anti-fibrotic lncRNA.  相似文献   

14.
15.
Fusion proteins composed of tumor binding agents and potentcatalytic toxins show promise for intracranial therapy of braincancer and an advantage over systemic therapy. Glioblastomamultiforme (GBM) is the most common form of brain cancer andoverexpresses IL-13R. Thus, we developed an interleukin-13 receptortargeting fusion protein, DT390IL13, composed of human interleukin-13and the first 389 amino acids of diphtheria toxin. To measureits ability to inhibit GBM, DT390IL13 was tested in vitro andfound to inhibit selectively the U373 MG GBM cell line withan IC50 around 12 pmol/l. Cytotoxicity was neutralized by anti-human-interleukin-13antibody, but not by control antibodies. In vivo, small U373MG glioblastoma xenografts in nude mice completely regressedin most animals after five intratumoral injections of 1 µgof DT390IL13 q.o.d., but not by the control fusion protein DT390IL-2.DT390IL13 was also tested against primary explant GBM cellsof a patient's excised tumor and the IC50 was similar to thatmeasured for U373 MG. Further studies showed a therapeutic windowfor DT390IL13 of 1–30 µg/injection and histologystudies and enzyme measurements showed that the maximum tolerateddose of DT390IL13 had little effect on kidney, liver, spleen,lung and heart in non-tumor-bearing immunocompetent mice. Together,these data suggest that DT390IL13 may provide an important,alternative therapy for brain cancer.  相似文献   

16.
目的探讨人骨形态发生蛋白9(Human bone morphogenetic protein 9,hBMP9)对人骨肉瘤细胞MG63和U2OS的抑制作用及其机制。方法用重组腺病毒AdBMP9分别感染MG63和U2OS细胞,并设空白对照组(不加任何处理因素)和AdGFP感染对照组,免疫细胞化学法(Immunocytochemistry,ICC)和Western blot法检测感染后两种细胞中hBMP9的表达水平;MTT和台盼蓝拒染活细胞计数法检测细胞的增殖活力;Hoechst/PI荧光双染法检测细胞的凋亡情况;划痕愈合试验检测细胞的迁移能力;ICC法检测Wnt/β-catenin信号途径中β-catenin的表达。结果AdBMP9感染的两种细胞中hBMP9的表达水平均明显高于空白对照组和AdGFP感染组(P<0.05);hBMP9表达的上调可抑制MG63和U2OS细胞的增殖,且呈时间依赖性(P<0.01),并使两种细胞的凋亡率明显增加(P<0.01),迁移能力明显下降(P<0.01),β-catenin的表达量明显减少(P<0.01)。结论 hBMP9可能通过下调Wnt/β-catenin信号途径活性,抑制骨肉瘤细胞的增殖、迁移,并促进其凋亡。  相似文献   

17.
The advanced use of a pH-responsive biomaterial-based injectable liquid implant for effective chemotherapeutic delivery in glioblastoma multiforme (GBM) brain tumor treatment is presented. As an implant, we proposed a water-in-oil-in-water multiple emulsion with encapsulated doxorubicin. The effectiveness of the proposed therapy was evaluated by comparing the cancer cell viability achieved in classical therapy (chemotherapeutic solution). The experimental study included doxorubicin release rates and consumption for two emulsions differing in drop sizes and structures in the presence of GBM-cells (LN229, U87 MG), and a cell viability. The results showed that the multiple emulsion implant was significantly more effective than classical therapy when considering the reduction in cancer cell viability: 85% for the emulsion-implant, and only 43% for the classical therapy. A diffusion–reaction model was adapted to predict doxorubicin release kinetics and elimination by glioblastoma cells. CFD (computational fluid dynamics) simulations confirmed that the drug release kinetics depends on multiple emulsion structures and drop sizes.  相似文献   

18.
19.
The aims of this study were to prepare organogels from pomegranate seed oil (PO) with carnauba wax (CW) and monoglyceride (MG), compare the organogels with a commercial margarine (CM) and evaluate 3 months storage stability. At 3% organogelator addition, no gels were formed, while at 7 and 10% additions, the oil binding capacities increased and were always higher in CW organogels, with crystal formation times of 8.0 to 14.0 min. Solid fat content (SFC) of the CW organogels varied between 2.96 and 8.71% at 20°C, while MG gels had 2.89–9.43%, and CM had 29.73% SFC. The peak melting temperatures of the CW organogels ranged from 74.73 to 75.74°C and MG organogels ranged from 11.09 to 50.63°C, whereas CM product exhibited 45.92°C peak melting temperature. The hardness of CW organogels was higher than that of MG organogels. The organogels showed potential as spreadable products. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41343.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号