首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Granulin is a secreted, glycosylated peptide—originated by cleavage from a precursor protein—which is involved in cell growth, tumor invasion and angiogenesis. However, the specific prognostic impact of granulin in human colorectal cancer has only been studied to a limited extent. Thus, we wanted to assess the expression of granulin in colorectal cancer patients to evaluate its potential as a prognostic biomarker. Methods: Expressional differences of granulin in colorectal carcinoma tissue (n = 94) and corresponding healthy colon mucosa were assessed using qRT-PCR. Immunohistochemistry was performed in colorectal cancer specimens (n = 97), corresponding healthy mucosa (n = 47) and colorectal adenomas (n = 19). Subsequently, the results were correlated with histopathological and clinical patients’ data. HCT-116 cells were transfected with siRNA for invasion and migration assays. Results: Immunohistochemistry and qRT-PCR revealed tumoral over expression of granulin in colorectal cancer specimens compared to corresponding healthy colon mucosa and adenomas. Tumoral overexpression of granulin was associated with a significantly impaired overall survival. Moreover, downregulation of granulin by siRNA significantly diminished the invasive capacities of HCT-116 cells in vitro. Conclusion: Expression of granulin differs in colorectal cancer tissue, adenomas and healthy colon mucosa. Furthermore, granulin features invasive and migrative capabilities and overexpression of granulin correlates with a dismal prognosis. This reveals its potential as a prognostic biomarker and granulin could be a worthwhile molecular target for individualized anticancer therapy.  相似文献   

2.
3.
Up to 40% of advance lung, melanoma and breast cancer patients suffer from brain metastases (BM) with increasing incidence. Here, we assessed whether circulating tumor cells (CTCs) in peripheral blood can serve as a disease surrogate, focusing on CD44 and CD74 expression as prognostic markers for BM. We show that a size-based microfluidic approach in combination with a semi-automated cell recognition system are well suited for CTC detection in BM patients and allow further characterization of tumor cells potentially derived from BM. CTCs were found in 50% (7/14) of breast cancer, 50% (9/18) of non-small cell lung cancer (NSCLC) and 36% (4/11) of melanoma patients. The next-generation sequencing (NGS) analysis of nine single CTCs from one breast cancer patient revealed three different CNV profile groups as well as a resistance causing ERS1 mutation. CD44 and CD74 were expressed on most CTCs and their expression was strongly correlated, whereas matched breast cancer BM tissues were much less frequently expressing CD44 and CD74 (negative in 46% and 54%, respectively). Thus, plasticity of CD44 and CD74 expression during trafficking of CTCs in the circulation might be the result of adaptation strategies.  相似文献   

4.
Prostate cancer is the most common cancer in men worldwide. To improve future drug development and patient management, surrogate biomarkers associated with relevant outcomes are required. Circulating tumour cells (CTCs) are tumour cells that can enter the circulatory system, and are principally responsible for the development of metastasis at distant sites. In recent years, interest in detecting CTCs as a surrogate biomarker has ghiiukjrown. Clinical studies have revealed that high levels of CTCs in the blood correlate with disease progression in patients with prostate cancer; however, their predictive value for monitoring therapeutic response is less clear. Despite the important progress in CTC clinical development, there are critical requirements for the implementation of their analysis as a routine oncology tool. The goal of the present review is to provide an update on the advances in the clinical validation of CTCs as a surrogate biomarker and to discuss the principal obstacles and main challenges to their inclusion in clinical practice.  相似文献   

5.
Cytoguardin was identified in the conditioned medium of fibroblasts as a tryptophan metabolite, 5-methoxytryptophan (5-MTP). It is synthesized via two enzymatic steps: tryptophan hydroxylase (TPH) and hydroxyindole O-methyltransferase (HIOMT). A truncated HIOMT isoform, HIOMT298, catalyzes 5-MTP synthesis. Cancer cells produce scarce 5-MTP due to defective HIOMT298 expression. 5-MTP inhibits cancer cell COX-2 expression and thereby reduces COX-2-mediated cell proliferation and migration. 5-MTP also inhibits MMP-9 expression and thereby reduces cancer cell invasion. 5-MTP exerts its anti-cancer effect by blocking p38 MAPK and p38-mediated NF-κB and p300 HAT activation. The stable transfection of A549 cells with HIOMT298 restores 5-MTP production which renders cancer cells less aggressive. The implantation of HIOMT-transfected A549 into subcutaneous tissues of a murine xenograft tumor model shows that HIOMT-transduced A549 cells form smaller tumors and generate fewer metastatic lung nodules than control A549 cells. HIOMT298 transfection suppresses aromatic amino acid decarboxylase (AADC) expression and serotonin production. Serotonin is a cancer-promoting factor. By restoring 5-MTP and suppressing serotonin production, HIOMT298 overexpression converts cancer cells into less malignant phenotypes. The analysis of HIOMT expression in a human cancer tissue array showed reduced HIOMT levels in a majority of colorectal, pancreatic, and breast cancer. HIOMT298 may be a biomarker of human cancer progression. Furthermore, 5-MTP has the potential to be a lead compound in the development of new therapy for the chemoprevention of certain cancers such as hepatocellular cancer.  相似文献   

6.
Esophageal squamous cell carcinoma (ESCC) has a poor prognosis when diagnosed at an advanced stage, and early detection and treatment are essential to improve survival. However, intraobserver and interobserver variation make the diagnosis of superficial ESCC difficult, and suitable biomarkers are urgently needed. Here, we compared the microRNA (miRNA) expression profiles of superficial ESCC tissues and adjacent normal tissues obtained immediately before esophageal endoscopic submucosal dissection. We found that ESCC and normal tissues differed in their miRNA expression profiles. In particular, miR-21-5p and miR-146b-5p were significantly upregulated and miR-210-3p was significantly downregulated in tumor tissues compared with normal tissues. We also detected significant associations between miRNA expression and ESCC invasion depth and lymphovascular invasion. The same differential expression of miR-21-5p, miR-146b-5p, and miR-210-3p was detected in ESCC cell lines compared with normal esophageal epithelial cells in vitro. However, transfection of ESCC cells with miR-210-3p and miR-21-5p mimics or inhibitors had partial effects on cell proliferation and invasion in vitro. These results indicate that miRNA expression is significantly deregulated in superficial ESCC, and suggest that the potential contribution of differentially expressed miRNAs to the malignant phenotype should be further investigated.  相似文献   

7.
Androgen receptor splice variant V7 (AR-V7) was recently identified as a valuable predictive biomarker in metastatic castrate-resistant prostate cancer. Here, we report a new, sensitive and accurate screen for AR-V7 mRNA expression directly from circulating tumor cells (CTCs): We combined EpCAM-based immunomagnetic CTC isolation using the IsoFlux microfluidic platform with droplet digital polymerase chain reaction (ddPCR) to analyze total AR and AR-V7 expression from prostate cancer patients CTCs. We demonstrate that AR-V7 is reliably detectable in enriched CTC samples with as little as five CTCs, even considering tumor heterogeneity, and confirm detection of AR-V7 in CTC samples from advanced prostate cancer (PCa) patients with AR-V7 detection limited to castrate resistant disease status in our sample set. Sensitive molecular analyses of circulating tumor cells (CTCs) or circulating tumor nucleic acids present exciting strategies to detect biomarkers, such as AR-V7 from non-invasive blood samples, so-called blood biopsies.  相似文献   

8.
Undetected micrometastasis plays a key role in the metastasis of cancer in colorectal cancer (CRC) patients. The aim of this study is to identify a biomarker of CRC patients with liver metastasis through the detection of circulating tumor cells (CTCs). Microarray and bioinformatics analysis of 10 CRC cancer tissue specimens compared with normal adjacent tissues revealed that 31 genes were up-regulated (gene expression ratio of cancer tissue to paired normal tissue > 2) in the cancer patients. We used a weighted enzymatic chip array (WEnCA) including 31 prognosis-related genes to investigate CTCs in 214 postoperative stage I–III CRC patients and to analyze the correlation between gene expression and clinico-pathological parameters. We employed the immunohistochemistry (IHC) method with polyclonal mouse antibody against DVL1 to detect DVL1 expression in 60 CRC patients. CRC liver metastasis occurred in 19.16% (41/214) of the patients. Using univariate analysis and multivariate proportional hazards regression analysis, we found that DVL1 mRNA overexpression had a significant, independent predictive value for liver metastasis in CRC patients (OR: 5.764; 95% CI: 2.588–12.837; p < 0.0001 on univariate analysis; OR: 3.768; 95% CI: 1.469–9.665; p = 0.006 on multivariate analysis). IHC staining of the immunoreactivity of DVL1 showed that DVL1 was localized in the cytoplasm of CRC cells. High expression of DVL1 was observed in 55% (33/60) of CRC tumor specimens and was associated significantly with tumor depth, perineural invasion and liver metastasis status (all p < 0.05). Our experimental results demonstrated that DVL1 is significantly overexpressed in CRC patients with liver metastasis, leading us to conclude that DVL1 could be a potential prognostic and predictive marker for CRC patients.  相似文献   

9.
Gastric cancer (GC) is one of the common reasons of cancer-related death with few biomarkers for diagnosis and prognosis. Solute carrier family 2 (facilitated glucose transporter) member 1 protein SLC2A1, also known as glucose transporter type 1 (GLUT1), has been associated with tumor progression, metastasis, and poor prognosis in many human solid tumors. However, little is reported about its clinical significance and biological functions in GC. Here we observed a strong up-regulation of SLC2A1 in patients with GC and found that SLC2A1 was significantly correlated with depth of invasion and clinical stage. Additionally, over-expression of SLC2A1 in GC cells promotes cellular proliferation and metastasis in vitro and enhances tumor growth in vivo as well as enhancement of glucose utilization. Meanwhile, elevated SLC2A1 also contributes to tumor metastasis in vitro. Our results indicate SLC2A1 exhibits a pivotal role in tumor growth, metastasis and glucose metabolism, and also suggest SLC2A1 as a promising target for gastric cancer therapy.  相似文献   

10.
Activation of an aberrant glycosylation pathway in cancer cells can lead to expression of the onco-foetal sialyl-Tn (sTn) antigen. STn is a truncated O-glycan containing a sialic acid α-2,6 linked to GalNAc α-O-Ser/Thr and is associated with an adverse outcome and poor prognosis in cancer patients. The biosynthesis of the sTn antigen has been linked to the expression of the sialytransferase ST6GalNAc1, and also to mutations in and loss of heterozygosity of the COSMC gene. sTn neo- or over-expression occurs in many types of epithelial cancer including gastric, colon, breast, lung, oesophageal, prostate and endometrial cancer. sTn is believed to be carried by a variety of glycoproteins and may influence protein function and be involved in tumour development. This review discusses how the role of sTn in cancer development and tumour cell invasiveness might be organ specific and occur through different mechanisms depending on each cancer type or subtype. As the sTn-antigen is expressed early in carcinogenesis targeting sTn in cancer may enable the targeting of tumours from the earliest stage.  相似文献   

11.
The majority of ovarian cancer patients present with advanced disease and despite aggressive treatment, prognosis remains poor. Significant improvement in ovarian cancer survival will require the development of more effective molecularly targeted therapeutics. Commonly, mouse models are used for the in vivo assessment of potential new therapeutic targets in ovarian cancer. However, animal models are costly and time consuming. Other models, such as the chick embryo chorioallantoic membrane (CAM) assay, are therefore an attractive alternative. CAM assays have been widely used to study angiogenesis and tumor invasion of colorectal, prostate and brain cancers. However, there have been limited studies that have used CAM assays to assess ovarian cancer invasion and metastasis. We have therefore developed a CAM assay protocol to monitor the metastatic properties of ovarian cancer cells (OVCAR-3, SKOV-3 and OV-90) and to study the effect of potential therapeutic molecules in vivo. The results from the CAM assay are consistent with cancer cell motility and invasion observed in in vitro assays. Our results demonstrate that the CAM assay is a robust and cost effective model to study ovarian cancer cell metastasis. It is therefore a very useful in vivo model for screening of potential novel therapeutics.  相似文献   

12.
13.
Triple-negative breast cancer (TNBC) is a highly aggressive disease with invasive and metastasizing properties associated with a poor prognosis. The STAT3 signaling pathway has shown a pivotal role in cancer cell migration, invasion, metastasis and drug resistance of TNBC cells. IL-6 is a main upstream activator of the JAK2/STAT3 pathway. In the present study we examined the impact of the NO-donor glyceryl trinitrate (GTN) on the activation of the JAK2/STAT3 signaling pathway and subsequent migration, invasion and metastasis ability of TNBC cells through in vitro and in vivo experiments. We used a subtoxic dose of carboplatin and/or recombinant IL-6 to activate the JAK2/STAT3 signaling pathway and its functional outcomes. We found an inhibitory effect of GTN on the activation of the JAK2/STAT3 signaling, migration and invasion of TNBC cells. We discovered that GTN inhibits the activation of JAK2, the upstream activator of STAT3, and mediates the S-nitrosylation of JAK2. Finally, the effect of GTN (Nitronal) on lung metastasis was investigated to assess its antitumor activity in vivo.  相似文献   

14.
The glucose transporter GLUT1 is frequently overexpressed in most tumor tissues because rapidly proliferating cancer cells rely primarily on glycolysis, a low‐efficiency metabolic pathway that necessitates a very high rate of glucose consumption. Because blocking GLUT1 is a promising anticancer strategy, we developed a novel class of GLUT1 inhibitors based on the 4‐aryl‐substituted salicylketoxime scaffold. Some of these compounds are efficient inhibitors of glucose uptake in lung cancer cells and have a notable antiproliferative effect. In contrast to their 5‐aryl‐substituted regioisomers, the newly synthesized compounds reported herein do not display significant binding to the estrogen receptors. The inhibition of glucose uptake in cancer cells by these compounds was further observed by fluorescence microscopy imaging using a fluorescent analogue of glucose. Therefore, blocking the ability of tumor cells to take up glucose by means of these small molecules, or by further optimized derivatives, may be a successful approach in the development of novel anticancer drugs.  相似文献   

15.
Depending on their tissue of origin, genetic and epigenetic marks and microenvironmental influences, cancer cells cover a broad range of metabolic activities that fluctuate over time and space. At the core of most metabolic pathways, mitochondria are essential organelles that participate in energy and biomass production, act as metabolic sensors, control cancer cell death, and initiate signaling pathways related to cancer cell migration, invasion, metastasis and resistance to treatments. While some mitochondrial modifications provide aggressive advantages to cancer cells, others are detrimental. This comprehensive review summarizes the current knowledge about mitochondrial transfers that can occur between cancer and nonmalignant cells. Among different mechanisms comprising gap junctions and cell-cell fusion, tunneling nanotubes are increasingly recognized as a main intercellular platform for unidirectional and bidirectional mitochondrial exchanges. Understanding their structure and functionality is an important task expected to generate new anticancer approaches aimed at interfering with gains of functions (e.g., cancer cell proliferation, migration, invasion, metastasis and chemoresistance) or damaged mitochondria elimination associated with mitochondrial transfer.  相似文献   

16.
The effects of bone morphogenetic proteins (BMPs), members of the transforming growth factor-β (TGF-β) family, in endometrial cancer (EC) have yet to be determined. In this study, we analyzed the TCGA and MSK-IMPACT datasets and investigated the effects of BMP2 and of TWSG1, a BMP antagonist, on Ishikawa EC cells. Frequent ACVR1 mutations and high mRNA expressions of BMP ligands and receptors were observed in EC patients of the TCGA and MSK-IMPACT datasets. Ishikawa cells secreted higher amounts of BMP2 compared with ovarian cancer cell lines. Exogenous BMP2 stimulation enhanced EC cell sphere formation via c-KIT induction. BMP2 also induced EMT of EC cells, and promoted migration by induction of SLUG. The BMP receptor kinase inhibitor LDN193189 augmented the growth inhibitory effects of carboplatin. Analyses of mRNAs of several BMP antagonists revealed that TWSG1 mRNA was abundantly expressed in Ishikawa cells. TWSG1 suppressed BMP7-induced, but not BMP2-induced, EC cell sphere formation and migration. Our results suggest that BMP signaling promotes EC tumorigenesis, and that TWSG1 antagonizes BMP7 in EC. BMP signaling inhibitors, in combination with chemotherapy, might be useful in the treatment of EC patients.  相似文献   

17.
18.
It is known that aquaporin 9 (AQP9) in the prostate was strictly upregulated by androgen and may represent a novel therapeutic target for several cancers, but whether AQP9 plays a role in the regulation of androgen-independent prostate cancer still remains unclear. In the present study, AQP9 was determined in prostate cancer and adjacent cancer tissues; AQP9-siRNA was applied to silencing AQP9 in androgen-independent prostate cancer cell PC3 cell line. Western blot and flow cytometry analysis were employed to detect changes in related-function of control and AQP9-siRNA groups. The results showed that AQP9 is significantly induced in cancer tissues than that in adjacent cancer tissues. Moreover, knockdown of AQP9 in PC3 androgen-independent prostate cancer cell prostate cancer cells increased inhibition rates of proliferation. In addition, knockdown of AQP9 resulted in a significant decrease in the expression of the Bcl-2 and with a notable increase in the expression of Bax and cleaved caspase 3, indicated that AQP9 knockdown promoted apoptosis in prostate cancer cells. From wound healing assay and matrigel invasion, we suggested that AQP9 expression affects the motility and invasiveness of prostate cancer cells. Moreover, In order to explore the pathway may be involved in AQP9-mediated motility and invasion of prostate cancer cells, the phosphorylation of ERK1/2 was significant suppressed in AQP9 siRNA-transfected cells compared with that in control cells, suggesting that AQP9 is involved in the activation of the ERK pathway in androgen-independent prostate cancer cells.  相似文献   

19.
Circulating tumor cells (CTCs) are elements of indisputable significance as they seem to be responsible for the onset of metastasis. Despite this, research into CTCs and their clinical application have been hindered by their rarity and heterogeneity at the molecular and cellular level, and also by a lack of technical standardization. Esophageal adenocarcinoma (EAC) is a highly aggressive cancer that is often diagnosed at an advanced stage. Its incidence has increased so much in recent years that new diagnostic, prognostic and predictive biomarkers are urgently needed. Preliminary findings suggest that CTCs could represent an effective, non-invasive, real-time assessable biomarker in all stages of EAC. This review provides an overview of EAC and CTC characteristics and reports the main research results obtained on CTCs in this setting. The need to carry out further basic and translational research in this area to confirm the clinical usefulness of CTCs and to provide oncologists with a tool to improve therapeutic strategies for EAC patients was herein highlighted.  相似文献   

20.
Hypoxia-regulated protein carbonic anhydrase IX (CA IX) is up-regulated in different tumor entities and correlated with poor prognosis in breast cancer patients. Due to the radio- and chemotherapy resistance of solid hypoxic tumors, derivatives of betulinic acid (BA), a natural compound with anticancer properties, seem to be promising to benefit these cancer patients. We synthesized new betulin sulfonamides and determined their cytotoxicity in different breast cancer cell lines. Additionally, we investigated their effects on clonogenic survival, cell death, extracellular pH, HIF-1α, CA IX and CA XII protein levels and radiosensitivity. Our study revealed that cytotoxicity increased after treatment with the betulin sulfonamides compared to BA or their precursors, especially in triple-negative breast cancer (TNBC) cells. CA IX activity as well as CA IX and CA XII protein levels were reduced by the betulin sulfonamides. We observed elevated inhibitory efficiency against protumorigenic processes such as proliferation and clonogenic survival and the promotion of cell death and radiosensitivity compared to the precursor derivatives. In particular, TNBC cells showed benefit from the addition of sulfonamides onto BA and revealed that betulin sulfonamides are promising compounds to treat more aggressive breast cancers, or are at the same level against less aggressive breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号