首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
TiO_2/SiO_2的制备及其对DDVP光催化性能的研究   总被引:1,自引:0,他引:1  
采用溶胶 -凝胶法制备了负载型光催化剂 Ti O2 Si O2 ,并用所制样品对有机磷农药 2 ,2 -二乙烯基二甲基磷酸酯 ( DDVP)进行光降解实验。用扫描电镜 ( SEM) ,红外光谱 ( IR)对所制样品进行了检测 ,讨论了制备条件 ,试剂用量等因素对 Ti O2 Si O2 制备及降解性能的影响。结果表明 :制备条件选用粒径为 180~ 2 5 0 μm的硅胶 ,浸渍时间 12 h,RH=90 %时所制样品的催化效果最好。  相似文献   

2.
以硝酸银、四氯化钛及活性炭为原料,采用溶胶-凝胶法和浸渍法制备了3种复合光催化剂。通过TEM、XRD、BET和UV-Vis光谱对复合光催化剂的形貌、物相组成、比表面积和吸光性能进行了表征,并以甲基橙的脱色降解为模型反应,考察了样品的光催化性能。结果表明:其光催化活性大小顺序为Ag/Ti O2/ACAg/Ti O2Ti O2,其中,Ag/Ti O2/AC由于具有895.21 m2/g的比表面积和Ag的负载改性而具有吸附、光催化双效功能,且对光的吸收扩展到可见光区,对甲基橙的最大降解率能达到95.2%。催化剂连续重复使用5次,Ag/Ti O2/AC对甲基橙溶液的脱色降解率均保持在90%以上。  相似文献   

3.
徐新龙  沈健  范立 《应用化工》2014,(12):2177-2181,2185
以钛酸四正丁酯为钛源,浸渍法制备了Ti-USY分子筛光催化剂,对光催化氧化汽油脱硫工艺条件(催化剂的加入量、氧化剂H2O2的用量、反应温度、萃取剂)、催化剂再生性和二次重复使用的稳定性进行考察。结果表明,Ti O2高度分散在USY分子筛表面上,催化剂样品均为典型的Ⅳ型吸附等温线,孔分布较窄。在催化剂的加入量为2 g/L,反应温度为40℃,水作为萃取剂,水油体积比为1∶1,1.5 h光照反应条件下,FCC汽油的脱硫率可达到62.4%。Ti-USY催化剂经7次高温再生后,脱硫率下降较小,仍在58%以上。2次重复使用脱硫率为42.66%。证明Ti-USY分子筛光催化剂良好的催化性能、再生性及稳定性。动力学分析表明,Ti-USY分子筛对汽油硫化物的光催化氧化动力学遵循标准一级反应,表观活化能为9.046 k J/mol。  相似文献   

4.
本文以Ti(SO4)2和硅藻土为原料,采用浸渍法制备TiO2硅藻土复合光催化剂,该催化剂既有良好的吸附性,也有较高的紫外光催化活性。在160W的紫外光照射、光催化剂投加量为1g/l、反应时间为30分钟的条件下,利用该催化剂处理浓度为20mg/l的亚甲基蓝水溶液,脱色率96%。  相似文献   

5.
《应用化工》2022,(9):1698-1702
采用减压蒸馏凝胶-煅烧法制备得到纯态Ti O2、Ti O2/甲壳素、掺氮Ti O2、负载型掺氮Ti O2/甲壳素4种光催化剂,对比研究了在钠灯(中心波长589 nm)照射下对甲基橙的催化降解活性,发现纯态Ti O2、Ti O2/甲壳素、掺氮Ti O2几乎没有催化活性,负载型掺氮Ti O2/甲壳素具有较好的可见光催化活性。研究了煅烧温度、煅烧时间、体系p H值对负载型掺氮Ti O2/甲壳素催化活性的影响。结果表明,负载型掺氮Ti O2/甲壳素在煅烧温度400℃、煅烧时间2 h、初始p H值3时催化活性最佳,甲基橙的残留率为2%。  相似文献   

6.
《应用化工》2015,(9):1698-1702
采用减压蒸馏凝胶-煅烧法制备得到纯态Ti O2、Ti O2/甲壳素、掺氮Ti O2、负载型掺氮Ti O2/甲壳素4种光催化剂,对比研究了在钠灯(中心波长589 nm)照射下对甲基橙的催化降解活性,发现纯态Ti O2、Ti O2/甲壳素、掺氮Ti O2几乎没有催化活性,负载型掺氮Ti O2/甲壳素具有较好的可见光催化活性。研究了煅烧温度、煅烧时间、体系p H值对负载型掺氮Ti O2/甲壳素催化活性的影响。结果表明,负载型掺氮Ti O2/甲壳素在煅烧温度400℃、煅烧时间2 h、初始p H值3时催化活性最佳,甲基橙的残留率为2%。  相似文献   

7.
采用浸渍法制备了H6P2W18O62/Ti O2-Si O2光催化剂,并采用傅里叶变换红外光谱(FTIR)、X射线粉末衍射(XRD)、扫描电子显微镜(SEM)对其进行了表征。通过光催化剂H6P2W18O62/Ti O2-Si O2对含甲基橙模拟废水进行处理,结果表明,H6P2W18O62/Ti O2-Si O2光催化剂表现出较高的光催化性能,在催化剂用量为1.39 g/L,甲基橙溶液质量浓度为5 mg/L,初始p H=3.5,反应时间2.5 h的条件下,甲基橙的降解率可达99.2%,且产生了协同效应。H6P2W18O62/Ti O2-Si O2光催化剂对罗丹明B、亚甲基蓝和甲基红均具有较高的光催化性能,降解率达84.0%~100.0%。光催化剂还表现出较好的重复使用性能,第5次降解率仍为94.4%。  相似文献   

8.
负载型TiO2光催化剂降解酸性玫瑰红B的研究   总被引:3,自引:1,他引:2  
采用溶胶-凝胶方法,经过数次浸渍制备成负载型纳米TiO2光催化剂,研究光催化氧化降解酸性玫瑰红B(简写为AR)。考察了浸渍次数和煅烧温度对光催化活性的影响,表明浸渍3次和煅烧温度为550℃时催化剂的活性最好。研究了掺杂镧的催化剂活性并与P25作了比较,掺杂镧后,催化剂活性明显提高,光催化活性比P25高出13.5%。同时进行了负载型TiO2/硅胶的动力学研究,表明光催化降解AR过程符合伪一级反应动力学模型。  相似文献   

9.
满雪  黄伟  李飞 《工业催化》2017,25(6):24-27
以ZrO_2为载体,采用浸渍法制备负载型钴锰复合金属氧化物催化剂,研究催化剂活性组分负载量、Co与Mn物质的量比、焙烧条件及含H_2O气氛对N_2O转化率的影响。结果表明,催化剂最佳制备条件为:活性组分Co负载质量分数3%,Co与Mn物质的量比为1∶1,焙烧升温速率2℃·min-1,焙烧温度900℃。该条件制备的负载型钴锰复合金属氧化物催化剂在反应温度850℃时,N_2O转化率达98.7%。当反应气氛中H_2O体积分数小于20%条件下,850℃时N_2O转化率高于90%,表明催化剂具有较强的抗水性能。  相似文献   

10.
采用浸渍法制备了以HZSM-5为载体的CoFe2O4光催化剂,利用X射线衍射仪、UV-Vis漫反射光谱仪、氮吸附比表面仪对样品进行了表征,发现HZSM-5表面负载有CoFe2O4复合氧化物,且负载后的比表面积明显增大.通过对HZSM-5负载CoFe2O4光催化剂的光催化性能研究得到12%CoFe2O4/HZSM-5在6...  相似文献   

11.
张海云  陈爱平  陈志龙 《农药》2005,44(3):110-112
研究了利用玻璃弹簧填料为载体,采用浸涂烧结法制备负载型纳米TiO_2的过程、及其对有机磷农药敌百虫和乐果的光催化降解效果,并与单TiO_2粉末做了简单对比。结果表明:低浓度的两种有机磷农药,8W紫外灯照射2h时,无负载TiO_2对敌百虫和乐果的降解率分别为56.7%和68.6%;而玻璃弹簧负载TiO_2对二者的降解率分别为76.6%和88.7%;并且玻璃弹簧上负载的TiO_2光催化活性没有减弱,可以连续使用。同时还研究了改良型P25(P25/20)悬浮体系中的光催化降解效果,并展望了其在军事防化洗消领域中的应用前景。  相似文献   

12.
采用溶胶-凝胶法制备了SiO2/TiO2粉体并采用XRD、TG-DTA及Uv-vis对其结构进行了表征.采用热沉积法将其负载于玻璃板上,以水中天然有机物腐殖酸和典型菌种大肠杆菌为代表物考察了SiO2/TiO2薄膜的光催化活性,并对其机理进行了推测.研究结果表明,SiO2/TiO2薄膜具有较高的光催化活性及抑菌作用.硅的引入不仅使催化剂的带隙变宽,提高了催化剂表面上光生e-h+的氧化还原能力,而且使催化剂表面出现了更多有利于光生空穴-电子转变为·OH的吸附氧,这是SiO2/TiO2薄膜使水中污染物降解及细菌灭活的主要原因.  相似文献   

13.
郭忠  廖禹东  赵风英 《陕西化工》2011,(11):1938-1941
用溶胶-凝胶法制得的纳米Fe3+/TiO2分别以玻璃和琼脂糖为负载体,采用浸渍-提拉法制备Fe3+/TiO2玻璃负载膜,水热合成法制得Fe3+/TiO2琼脂糖凝胶负载膜,通过降解某制药厂的制药废水,探讨两种负载膜对纳米Fe3+/TiO2光催化活性的影响及用琼脂糖为载体的可行性。结果表明,两种负载膜中纳米Fe3+/TiO2的晶相不变,但琼脂糖凝胶负载膜中纳米Fe3+/TiO2粒子的团聚较少,且不易脱落,重复使用性能高,光催化活性明显较Fe3+/TiO2玻璃负载膜强,从而显示了琼脂糖为载体的可行性、优越性和实用性。  相似文献   

14.
TiO2/SnO2复合薄膜的光催化活性研究   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法常温合成含有一定晶型的TiO2溶胶和SnO2溶胶,使用浸渍提拉法在普通载玻片上制备出TiO2/SnO2复合膜。考察了不同SnO2薄膜层数对TiO2/SnO2复合膜光催化活性的影响,并对其光催化活性提高的机理进行了探讨。结果表明,SnO2层的加入能有效提高薄膜的光催化活性,这是由于SnO2的导带电位低于TiO2的导带电位,其价带电位高于TiO2的价带电位,光激发下,TiO2中产生的光生电子注入到SnO2层,有效抑制了薄膜内电子-空穴对的复合,增加了复合薄膜表面空穴的浓度,因而光催化活性得到了显著的提高。  相似文献   

15.
兰允祥  刘小珍  何杰 《广东化工》2010,37(5):76-77,96
以载玻片为基材,通过溶胶-凝胶技术制备Fe3+离子掺杂的TiO2薄膜。采用甲基橙作为目标降解物,研究Fe3+掺杂薄膜的光催化活性,采用X-射线衍射、扫描电镜和紫外-可见光吸收谱等技术对薄膜相关特征进行了表征。研究表明,当Fe/Ti物质量比为0.25%时,光催化活性最高。经500℃焙烧2h制备TiO2薄膜具有锐钛矿结构,TiO2粒子大小均匀,有孔隙结构。掺杂Fe3+使薄膜TiO2粒子减小,孔隙率增加,而粒子粒径分布不均匀增加,且吸收强度增加吸收边有一定的红移。  相似文献   

16.
光催化自洁净玻璃的研制   总被引:22,自引:3,他引:19  
用溶胶-凝胶法制备了表面镀有Ag-TiO2光催化薄膜的自洁净玻璃,并利用XRD,SEM等方法研究了光催化薄膜的结构与特征,考察了不同银含量以及不同膜厚度对自洁净玻璃光催化活性的影响。研究结果表明:光催化薄膜主要由20-100nm的Ag和TiO2颗粒构成;掺入适量银,可提高光催化活性,在[Ag]/[TiO2]=2/50(浓度比)时为最好。在[Ag]/[TiO2]=2/50时,膜厚为0.87μm时光催化活性最高。  相似文献   

17.
以钛酸四丁酯(Ti(OC4H9)4)为原料,用溶胶-凝胶法制备活性炭(AC)负载(TiO2。XRD分析其晶型组成。实验研究了不同TiO2负载量、不同煅烧时间、不同煅烧温度以及不同使用次数等情况下TiO2/AC光催化剂的光催化活性。实验结果表明,当负载量为28.2%、煅烧时间为4h、煅烧温度为400℃时催化剂活性最高,甲基橙溶液的降解率到达了98.09%。同时研究表明了多次使用后的TiO2/AC光催化剂仍具有很好的光催化性能。  相似文献   

18.
TiO2自洁玻璃制备及其应用   总被引:3,自引:0,他引:3  
T iO2薄膜具有良好的光催化特性,在紫外光照射下表现出高的光催化活性、超亲水亲油性,可用于外墙装饰玻璃的自清洁、汽车后视镜的防雾、室内墙面的杀菌等方面。根据近年来国内外T iO2薄膜的研究现状,对制备T iO2薄膜的各种化学和物理方法进行了综述,对其优缺点进行了比较,并阐述了自洁玻璃的应用领域。  相似文献   

19.
赵静 《山东化工》2011,40(8):1-3
在溶胶-凝胶法制备。TiO2胶体溶液的基础上,用玻璃珠作载体制备了负载型TiO2光催化剂,利用SEM对玻璃珠载体和玻璃珠负载TiO2膜的粒径进行了表征分析;同时对玻璃珠负载TiO2的光催化活性进行了研究。  相似文献   

20.
WO3-treated fullerene/TiO2 composites (WO3-fullerene/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light. An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号