首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
CVI法快速制备C/SiC复合材料   总被引:8,自引:1,他引:7  
为缩短CVI法制备C/SiC复合材料的工艺周期并降低成本,研究了CVI工艺过程中沉积温度、MTS(CH3SiC3)摩尔分数和气体流量对SiC沉积速率和MTS有效利用率的影响,实验结果表明:提高沉积温度,常压下1100℃时增大MTS摩尔分数(11%→19%),都有利于提高SiC沉积速率;提高沉积温度和降低反应物气体流量,能提高MTS有效利用率,在优化的工艺条件下,预制体的微观孔隙内沉积了致密的SiC基体,沉积速率达到142μm/h左右,并有效消除了基体中裂纹的形成,MTS的有效利用率为11%-27%。  相似文献   

2.
提出了一种由聚二甲基硅氧烷(PDMS)与碳化硅(SiC)复合材料构成的功能梯度柔性衬底结构,给出了相应的三维(3D)打印制造工艺流程。通过实验分析了不同SiC粒径及含量对PDMS/SiC复合材料力学性能、导热性能的影响规律;探究了背压、打印速度、线间距、温度等工艺参数对不同SiC含量PDMS/SiC复合材料制造精度的影响规律。结果表明,相比于纯PDMS衬底,不同SiC粒径及含量对复合材料性能均有提高,当SiC粒径为600 nm且含量为45 %(质量分数,下同)时,对应的PDMS/SiC功能梯度柔性衬底的弹性模量提高了2.76倍,导热系数提高了2.22倍。  相似文献   

3.
将碳化硅(SiC)粒子和高密度聚乙烯(PE—HD)经粉末混合后制得导热复合材料。研究了SiC粒子分散状态及含量对复合材料热导率、热阻、力学性能及电绝缘性能的影响,探讨了SiC粒径对热导率的影响。结果表明:复合材料中SiC粒子围绕在PE—HD粒子周围,形成了特殊的网状导热通路;随SiC粒径增加,热导率降低;在填料体积分数为30%时,复合材料热导率、热阻、拉伸强度及冲击强度、体积电阻率和介电常数分别为1.05W/(m·K)、0.75K/W、15MPa、13.2kJ/m^2、4.6×10^15 ·Ω·cm和3.03。此外,使用少量的氧化铝(Al2O3)纤维替代SiC组成混杂填料增强的材料各项性能均得到改善,并且与纯PE-FID相比具有优良的热传导能力。  相似文献   

4.
逆反应烧结制备碳化硅/氮化硅复合材料的工艺   总被引:17,自引:8,他引:9  
制备Si3N4/SiC复合材料的常规反应烧结是以Si和SiC为原料进行氮化烧结,而逆反应烧结是以Si3N4和SiC为原料,首先使Si3N4反向反应为活性氧化物后再进行烧结。建立逆反应烧结工艺制备Si3N4/SiC复合材料的热力学基础。确定了Si3N4先于SiC氧化;氧化产物可以是SiO2,也可以是Si2N2O;形成的SiO2氧化膜不会与基体材料反应;在膜与基体之间可能生成Si2N2O。论证了逆反应烧结的热力学可行性。通过6个烧结实验,证实了其热力学分析的正确性,并从工艺参数与密度变化、残氮率和比强度等关系筛选出最佳的烧结工艺参数。  相似文献   

5.
采用高温包渗技术在炭/炭复合材料表面制备了SiC/Mo(Six,Al1-x)2复合涂层,采用两步反应法研究了复合涂层的生成机理。发现复合涂层是由Si、Al2O3、SiC、MoSi2原始粉末材料与基体炭材料经过复杂化学反应生成的SiC、Mo(SixAl1-x)2以及微量Mo4.8Si3C0.6固溶体组成。在较低温度下(〈1750℃),单质硅与基体碳的液-固相反应,经过2小时后可以在炭/炭复合材料表面和内部孔隙表面生成致密的SiC过渡涂层;在较高温度下(≤2000℃),SiC、Al2O3和MoSi2间的反应较为复杂,其主要过程为SiC与Al2O3间生成液体硅、液体铝和气态SiO、Al2O的多相反应,该反应生成的液体铝能够与MoSi2颗粒发生置换反应,生成熔点降低的Mo(Six,Al1-x)2转移涂层;同时,生成的液体硅与CO反应生成晶须状β—SiC,并与Mo(Six,Al1-x)2形成增强型复合涂层。本文还研究了过量单质Si和SiC对Mo(Six,Al1-x)2的还原反应,化学反应推论与实验结果相吻合。以新提出的涂层生成机理为指导,以粉末原料质量组成为Si10%,Al2O3 10%,SiC54%和MoSi226%时所制得了致密并且无粘结的复合涂层材料,并研究了封孔处理后复合材料的抗氧化性能。  相似文献   

6.
为比较碳化硅(SiC)含量对聚氯乙烯(PVC)/竹粉木塑复合材料性能的影响,以竹粉为木质纤维,PVC为基体材料,用挤出成型方法制备了不同含量SiC的PVC/竹粉复合材料,对其力学性能、摩擦磨损性能及蠕变性能测试分析。结果表明:当SiC质量分数为3%时,PVC/SiC/竹粉复合材料拉伸强度和冲击强度性能较好,较未添加SiC的PVC/竹粉复合材料分别高出29.0%,4.2%;SiC质量分数为3%时,摩擦系数、磨损失重率最小分别为0.428 5,0.151%;添加1.5%SiC的PVC/竹粉复合材料弯曲强度最高,为36.6 MPa。蠕变应力值为3.552 8 MPa时,SiC含量对PVC/竹粉木塑复合材料应变影响相近,其中,PVC/竹粉/1.5%SiC复合材料应变值最小;应力值为7.105 6 MPa、10.658 4 MPa时,PVC/竹粉/3.0%SiC复合材料应变值最小。  相似文献   

7.
通过超声分散和模具浇注成型法制备了周期性孪晶结构碳化硅(SiC)纳米线改性环氧树脂,探讨了SiC纳米线的周期性孪晶结构及含量对环氧树脂复合材料力学性能的影响。结果表明,周期性孪晶结构SiC纳米线的加入明显改善了环氧树脂基体的力学性能,孪晶结构有助于提高SiC纳米线与基体树脂之间的相互结合程度。随着孪晶SiC纳米线含量的增加,复合材料的拉伸性能和弯曲性能都呈现出先增加后减小的趋势。当SiC纳米线的含量为2%时,复合材料的拉伸强度、拉伸弹性模量、断裂伸长率、弯曲强度和弯曲弹性模量均达到最大值,相比于纯环氧树脂分别提高了90.6%,37.8%,38.3%,53.4%和24.5%。当SiC纳米线含量为3%时,弯曲应变达到最大值(6.72%),相比于环氧树脂提高了32.0%。  相似文献   

8.
最近发展起来的SiC纤维复合涂层,也就是SiC/SiC层与化学气相沉积(CVD)SiC结合形成复合涂层,已能够在高温下提高C/C复合材料的抗氧化性。形成的SiC纤维复合涂层约300μm厚,生产时先将SiC毡覆盖在3D-C/C基体材料上,然后浸渍一种碳粉与硅粉均匀分散的料浆进行化学气要沉积。通过化学气相沉积(CVD)过程,在复合材料上形成致密的涂层。在CO2-H2O-N2组成的混合气体(CO2 9%、N273%、H2O18%),1700℃下进行5h氧化实验,结果发现有SiC毡增强复合涂层比没有SiC毡增强复合材料失重率低。SiC纤维毡复合涂层由双层结构组成,里层是多气孔的SiC/SiC纤维层,外层为致密的SiC涂层。由于SiC/SiC纤维层热膨胀系数介于C/C复合基体材料与CVD-SiC涂层之间,因此,SiC/SiC中间层在复合材料中起了重要作用,从而由于热膨胀系数不同产生的热应力致使涂层开裂降低到最低程度。涂层试样氧化后,采用缓冲冲床(MSP)测试其残余强度。MSP测试结果表明氧化后C/C复合材料强度值呈发散性,从纤维折断面看有z轴方向分布纤维存在。然而,这种方法仅适用于测试小尺寸试样。从这篇论文中,可看出涂层后的C/C复合材料有高的抗氧化性,其氧化后仍能保持高的残余强度。  相似文献   

9.
SiC陶瓷及其复合材料连接的研究进展   总被引:1,自引:0,他引:1  
SiC陶瓷及其复合材料(SiCf/SiC、Cf/SiC)由于具有优良的高温强度、耐磨和抗腐蚀的性能而被广泛关注,而SiC陶瓷及其复合材料的连接是获得这一性能的关键技术之一。综述了SiC陶瓷及其复合材料连接的一般方法和连接技术,同时指出了连接技术的发展趋势。  相似文献   

10.
基体改性剂含量对C/C复合材料抗氧化性能的影响   总被引:1,自引:0,他引:1  
采用氧化烧蚀试验研究了改性剂硼玻璃含量对C/C复合材料抗氧化性能的影响,通过扫描电镜(SEM)观察分析了其抗氧化机理。结果表明:随着改性剂硼玻璃含量的增加,基体改性C/C复合材料的显气孔率逐渐降低,抗氧化能力逐渐增强,当硼玻璃的含量超高9.0wt%后,C/C复合材料抗氧化能力的提高趋于平缓;在基体改性C/C复合材料的氧化过程中,改性剂硼玻璃起到了内外涂层的作用,使其抗氧化能力大大提高。  相似文献   

11.
三维针刺C/SiC复合材料的结构特征和力学性能   总被引:3,自引:0,他引:3  
采用化学气相渗透法制备了在厚度方向上具有纤维增强的三维针刺碳纤维增强碳化硅(C/SiC)陶瓷基复合材料,复合材料的密度和气孔率分别为2.15 h/cm3和16%.三维针刺C/SiC复合材料中的针刺纤维将各层紧密结合在一起,其层间抗剪切强度显著提高,为95MPa,比二维碳布叠层C/SiC复合材料的剪切强度(35MPa)高171.4%.三维针刺C/SiC复合材料的拉伸强度和弯曲强度分别为159MPa和350MPa,断裂模式为非脆性断裂,包括:裂纹扩展、偏转,碳纤维的拉伸断裂和逐步拔出.  相似文献   

12.
Creep properties of 2D woven CVI and PIP SiC/SiC composites with Sylramic™-iBN SiC fibers were measured at temperatures to 1650 °C in air and the data was compared with the literature. Batch-to-batch variations in the tensile and creep properties, and thermal treatment effects on creep, creep parameters, damage mechanisms, and failure modes for these composites were studied. Under the test conditions, the CVI SiC/SiC composites exhibited both matrix and fiber-dominated creep depending on stress, whereas the PIP SiC/SiC composites displayed only fiber-dominated creep. Creep durability in both composite systems is controlled by the most creep resistant phase as well as oxidation of the fibers via cracking matrix. Specimen-to- specimen variations in porosity and stress raisers caused significant differences in creep behavior and durability. The Larson-Miller parameter and Monkman-Grant relationship were used wherever applicable for analyzing and predicting creep durability.  相似文献   

13.
连续碳化硅纤维增强碳化硅陶瓷基复合材料(SiC/SiC)具有低密度、耐高温、低氚渗透率和优异的辐照稳定性的优点,在航空、航天、核能等领域具有广泛的应用前景。本文针对PIP工艺制备SiC/SiC复合材料周期长、孔隙率较高及易氧化的问题,通过料浆预浸料工艺在基体中引入氧化铝陶瓷形成SiC/Al2O3-SiC复相基体复合材料,并对复合材料制备工艺过程、微观形貌及力学性能进行系统表征。分析结果表明,SiC/Al2O3-SiC复相基体复合材料制备周期较传统PIP工艺大幅度缩短,且复合材料孔隙率明显降低,从11.6%左右降低至6%,拉伸强度为316.5MPa,提升了12.3%,弯曲强度与SiC/SiC相当,但层间剪切强度较低,仅为16.3MPa,有待进一步提高。  相似文献   

14.
The influences of the SiC infiltration and coating on the compressive mechanical behaviours of 2D C/SiC composites were determined up to 1600 °C at 0.001 and 1000/s strain rates in argon and air. In addition, the failure mechanisms responsible for the compressive mechanical behaviours were elucidated through in-situ observation and micro-analysis-based methods. The 2D C/SiC composite compressive strength was highly sensitive to temperature, loading rate, and oxidation, and was enhanced by the change in the thermal residual stress and decreased by oxidation. In argon, because of the extra infiltrated SiC matrix, SiC treated 2D C/SiC specimens exhibited higher compressive strengths and lower strain rate sensitivity factors than SiC untreated 2D C/SiC specimens. The SiC coating effectively improved the oxidation resistance of the 2D C/SiC composites in air, regardless of the temperature, strain rate, and oxidative damage-which depends on SiC coating, strain rate, and temperature.  相似文献   

15.
《Ceramics International》2016,42(15):17137-17147
The properties of ceramic matrix composites strongly depend upon their complex internal structures. To better understand and improve the properties of the silicon carbide fiber-reinforced silicon carbide matrix composites (SiCf/SiC), we explored the microstructural properties of composites reinforced with either two-dimensional (2D) woven or three-dimensional (3D) braided preforms using synchrotron X-ray computed microtomography. Transects and volumetric images of the composites were reconstructed from objection images and the microstructures were investigated in three spatial directions. The network of void space in a composites was visualized in 3D and quantitative analysis of the porosity was performed to characterize the fiber-tissue structures. 2D-woven SiCf/SiC composite exhibited important fluctuations of porosity in different directions and the stacking of plies had a significant effect on the porosity distribution. In contrast, 3D-braided SiCf/SiC composites showed much less variation of porosity. We found the degree of densification of the composite also influenced the porosity distribution.  相似文献   

16.
C/C–SiC composite was fabricated with time efficiency and low cost by a two-step process. A quasi 3D carbon-fiber-felt was firstly densified to C/C composite in 2–5 h by a thermal gradient CVI method based on precursor of kerosene. Then, the C/C composite of different porosities was reactively infiltrated with Si for 40 min to obtain C/C–SiC composite. The influence of the porosity of the C/C composite on the microstructure and mechanical properties of the C/C–SiC composite was investigated. The results show that the density of the C/C–SiC composite increases from 2.0 g/cm3 to 2.3 g/cm3 while its porosity decreases from 5.8% to 1.7% with the increasing porosity of the C/C composite. Moreover, the porosity of the C/C composite affects both the amounts of β-SiC, Si phases and the mechanical properties of the C/C–SiC composite. The flexural strength and modulus of the C/C–SiC composite are much higher than those of the C/C composite. The C/C–SiC composite from the C/C composite of 19.7% porosity has the highest flexural strength and modulus, which are 132 MPa and 14.4 GPa, respectively.  相似文献   

17.
Oxidation tests of carbon fiber reinforced silicon carbide composites with a Si–W coating were conducted in dry air from room temperature to 1500°C for 5 h. A continuous series of empirical functions relating weight change to temperature after 5 h oxidation was found to fit the test results quite well over the whole temperature range. This approach was used to interpret the different oxidation mechanisms. There were two cracking temperatures of the matrix and the coating for the C–SiC composite. Oxidation behavior of the C–SiC composite was nearly the same as that of the coated C–C composite above the coating cracking temperature, but weight loss of the C–SiC composite was half an order lower than that of the coated C–C composite below the cracking temperature. As an inhibitor, the SiC matrix increased the oxidation resistance of C–SiC composites by decreasing active sites available for oxidation. As an interfacial layer, pyrolytic carbon decreased the activation energy below 700°C. From 800°C to 1030°C, uniform oxidation took place for the C–SiC composite, but non-uniform oxidation took place for the coated C–C composite in the same temperature range. The Knudsen diffusion coefficient could be used to explain the relationship between weight loss and temperature below the coating cracking temperature and the matrix cracking temperature.  相似文献   

18.
A carbon-fiber-reinforced silicon carbide composite (3D-C/SiC) was prepared by chemical vapor infiltration. A SiC and SiC/Si-Zr coating were deposited on the composite to investigate the effect of different coatings on the oxidation behavior of 3D-C/SiC composites. The 3D-C/SiC(SiC/Si-Zr) composite decreased in weight below 1000°C and increased in weight above 1000°C. With an increasing oxidation time, the weight loss increased greatly and the weight gain increased little. The 3D-C/SiC(SiC) composite always decreased in weight over the full temperature range. With an increasing oxidation time, the weight loss increased rapidly below 1000°C and reached its minimum value at 1400°C. The 3D-C/SiC(SiC/Si-Zr) composite had a higher oxidation resistance above 1000°C, and the 3D-C/SiC(SiC) composite had a higher oxidation resistance below 1000°C. The wider the coating cracks, the larger the maximum weight loss and the lower the temperature corresponding to the maximum weight loss. With an increasing oxidation time, the activation energy of the 3D-C/SiC(SiC/Si-Zr) composite increased from 96 to 138 kJ/mol, and the 3D-C/SiC(SiC) composite increased from 130 to 180 kJ/mol.  相似文献   

19.
蒋鸣暄  郑久红 《炭素》1998,(4):35-38,34
采用化学气相沉积方法,在石墨基体上,在1623K,666Pa的条件下制备了SiC含量从0 ̄100wt%全范围变动的C-SiC复合涂层材料,X-射线衍射表明,当SiC含量代于34wt%时,SiC以(220)面择优取向,而当含量高于34wt%时,SiC以(111)面择优取向。本文还对复合涂层的密度及硬度等性能做了测试。  相似文献   

20.
The oxidation behavior of a 2D woven C/SiC composite partly protected with a SiC seal coating and heat-treated (stabilized) at 1600°C in inert gas has been investigated through an experimental approach based on thermogravimetric analyses and optical/electron microscopy. Results of the tests, performed under flowing oxygen, have shown that the oxidation behavior of the composite material in terms of oxidation kinetics and morphological evolutions is related to the presence of thermal microcracks in the seal coating as well as in the matrix. Three different temperature domains exist. At low temperatures (<800°C), the mechanisms of reaction between carbon and oxygen control the oxidation kinetics and are associated with a uniform degradation of the carbon reinforcement. At intermediate temperatures, (between 800° and 1100°C), the oxidation kinetics are controlled by the gas-phase diffusion through a network of microcracks in the SiC coating, resulting in a nonuniform degradation of the carbon phases. At high temperatures (>1100°C), such diffusion mechanisms are limited by sealing of the microcracks by silica; therefore, the degradation of the composite remains superficial. The study of the oxidation behavior of (i) the heat-treated composite in a lower oxygen content environment (dry air) and (ii) the as-processed (unstabilized) composite in dry oxygen confirms the different mechanisms proposed to explain the oxidation behavior of the composite material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号